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Abstract

Recent studies of spatially explicit metapopulation models have shown the existence of

complex transient behaviour (supertransients and mesotransients) characterized by

spontaneous changes in the system’s dynamics after thousands or hundreds of

generations, respectively. Their detection in simple ecological models has been taken as

evidence that transient dynamics may be common in nature. In this study, we explore the

generality of these phenomena in a simple one-dimensional spatially explicit metapop-

ulation model. We investigate how frequently supertransient behaviour emerges in

relation to the shape and type of the dispersal kernel used (normal and Laplace), system

size, boundary conditions and how sensitive they are to initial conditions. Our results

show that supertransients are rare, are heavily affected by initial conditions and occur for

a small set of dispersal parameter values, which vary according to kernel type, system

size, and boundary conditions. Similarly, mesotransients emerge over a very narrow

range of dispersal parameter values and are rare under all circumstances. Thus, transient

dynamics are not likely to be either common or widespread in simple models of

ecological systems.
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I N T R O D U C T I O N

The study of spatial population dynamics and persistence

has received renewed attention in the past few years (Maurer

1994; Tilman & Kareiva 1997; Bascompte & Solé 1998a,b;

Turchin 1998; Keymer et al. 2000), and has been the source

of many new insights to ecological phenomena (Paradis et al.

2000; Williams & Liebhold 2000). One of the most popular

forms of spatial population models considers metapopula-

tions, or ensembles of local populations coupled by

dispersal. These simple models, known as coupled map

lattices (CML) (Kaneko 1989, 1998) predict a range of

spatiotemporal patterns, some of which have been found in

nature (Maron & Harrison 1997; Ranta et al. 1997; Lambin

et al. 1998; Solé & Bascompte 1998; Blasius et al. 1999), and

have been extensively used in the study of complex systems

(Kaneko & Tsuda 2000). Theoretical studies of CMLs have

suggested that the population dynamics we observe in

nature may well correspond to a transient dynamical

behaviour, which shows spontaneous changes from

apparent chaotic dynamics to cyclic behaviour and vice

versa occurring at time scales longer than a typical ecological

time series (Hastings & Higgins 1994). Recently, Saravia

et al. (2000) noted that CML may show sudden changes in

behaviour at shorter temporal scales, similar to that of

ecological studies, and have suggested that these mesoscale

changes in dynamics (termed �mesotransients� by the

authors) may be of greater relevance than longer transient

behaviour. These claims contrast with the traditional

emphasis on the analysis of long-term solutions (asymptotic

states) in the study of ecological models (Hastings &

Higgins 1994; Hastings 1998; Earn & Rohani 1999). If

transient behaviour is common in nature, then ecological

systems might often be in a transient state, and changes in

their dynamics might be compounded by intrinsic dynamical

effects and also by changes in the environment wherein they

are embedded.

The first step towards determining whether we can expect

such complex transient behaviour to be common in nature

is the assessment of their generality in model ecological

systems. It is known that supertransient dynamics are likely

to appear when coupled local populations are in a chaotic

regime (Kaneko 1989; Hastings & Higgins 1994; Ruxton &

Doebeli 1996) and that average transient length increases

with system size and the degree of global coupling between

populations (Kaneko 1990, 1998; Hastings 1998). In
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ecological models, however, coupling has only been

modelled assuming a normal (gaussian) dispersal kernel

and for a restricted set of dispersal intensities and spatial

ranges (Hastings & Higgins 1994; Ruxton & Doebeli 1996;

but see Saravia et al. 2000). However, many organisms, such

as plants or aquatic invertebrates and vertebrates, might be

better represented by a fat-tailed, leptokurtic kernel such as

Laplace dispersal kernel (Neubert et al. 1995; Clark et al.

1999; Fraser et al. 2001), where settlement is probabilistic

(i.e. there is a failure rate or hazard function).

In this paper, we explore the generality of both

supertransient and mesotransient dynamics in terms of

dispersal (kernel type and coupling), system size, boundary

conditions and sensitivity to initial conditions. We do this by

analysing a model system for which both complex transient

behaviours has been reported. Our results show that

supertransient dynamics are a rare phenomenon emerging

for a restricted set of dispersal parameter values, which

nonetheless vary between kernels, and is affected by system

size, boundary conditions and depends heavily on initial

conditions. Mesotransients on the other hand are seen to

occur for a smaller range of dispersal parameter values. We

discuss the implications of these results both for theoretical

and empirical population dynamics.

M A T E R I A L S A N D M E T H O D S

Following Hastings (1998), we modelled a small set of M

discrete local populations, of a semelparous species,

distributed along a linearly structured environment, such

as may be found along a stretch of coastline. In each of

these populations, reproduction occurs synchronously in a

density-dependent fashion. At the start of a given generation

t, population size in the ith population is denoted N[t,i]. The

reproductive events generate a larval stage, L, which

disperses among the local populations. Abundance of larvae

in each population L[t,i], after reproduction and before they

disperse, is given by (see Maynard-Smith & Slatkin 1973;

Ruxton & Doebeli 1996),

L½t ;i� ¼ N½t ;i�f ðN½t ;i�Þ ¼
kN½t ;i�

1 þ aN b
½t ;i�

ð1Þ

The parameter k is the growth rate, a is the inverse of the

environmental carrying capacity and b describes the intensity

of density dependence (for further discussion of this model

see Hassell 1975; Bellows 1981; Doebeli 1995). All larvae are

produced synchronously and settlement is simultaneous

throughout the metapopulation. Larvae are redistributed in a

density-independent fashion according either to Laplace or

normal kernel, which reflect different dispersal strategies of

larvae. In comparison with the normal kernel, larvae under

Laplace kernel have at the same time a higher probability of

remaining at the source and of dispersing over a longer

range (Fig. 1). For the normal dispersal kernel (Neubert

et al. 1995), the proportion of the larvae on patch i that

move to patch j is:

P½i;j � ¼
1

2
ffiffiffiffiffiffi
pr

p e
1

4rði�jÞ2

ð2Þ

In the case of Laplace dispersal kernel (Neubert et al. 1995),

the proportion of the larvae on patch i which moves to

patch j is:

P½i;j � ¼
1

2r
e

1
rjði�jÞj ð3Þ

For both dispersal kernels the shape of the dispersal curve,

which is controlled by the parameter r, gives the intensity

and extent of dispersal: the smaller the parameter, the larger

the proportion of individuals that will remain in the parental

habitat and more local populations will remain unconnected

(Fig. 1). High values of r will result in greater spatial spread

of the individuals with lower intensity.

The model assumes non-overlapping generations, and so

all adult individuals die at the end of the reproductive

period. Local population size at the next generation is the

result of the recruitment of all the larvae dispersed from all

σ
σ
σ

Figure 1 Dispersal kernels used in this study. Note the leptokurtic

shape of the Laplace distribution. The figure shows the proportion

of propagules dispersed to different distances from a central focal

population (site 25) for r ¼ 1, r ¼ 5 and r ¼ 10 (a) normal

dispersal kernel and (b) Laplace dispersal kernel. Note that for a

small system size (M ¼ 10) large values of dispersal result in loss of

propagules from the system under dissipative boundary conditions

while periodic boundaries result in essentially a more platikurtic

redistribution kernel.
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subpopulations. The number of individuals in each popu-

lation in the next generation is given by the sum of the

larvae dispersed over the entire ensemble to that particular

population.

N½tþ1;i� ¼
XM

j¼0

L½t ;j �p½j ;i� ð4Þ

On the other hand, total population abundance for the

metapopulation at generation t is given by the sum of

individuals present in the metapopulation after dispersal and

prior to reproduction. Previous studies (Hastings & Higgins

1994; Ruxton & Doebeli 1996) have assumed dissipative

boundary conditions (but see Hastings 1998). This means

that a fraction of the larvae disperse beyond the edges of the

ensemble and do not influence the dynamics of the system.

It may be argued that this loss of individuals may lower the

local growth rate, thus lowering the likelihood of observing

transient dynamics. To assess the importance of larval loss

we compared, for each dispersal kernel, the effect of

dissipative vs. periodic boundary conditions. To allow easier

comparison of the results we set the parameters a ¼ 1,

b ¼ 4.8 and k ¼ 7, as used by Ruxton & Doebeli (1996).

Under these parameter values, isolated local populations

show chaotic dynamics. Initial local population abundances

(i.e. initial conditions) were drawn independently from a

random uniform distribution between 0 and 4. In each

simulation, the model was iterated for 10 000 generations,

and the dynamics examined for the occurrence of transient

dynamics (Hastings & Higgins 1994). This procedure was

performed for both dispersal kernels using two ranges of the

dispersal parameter (r), from 0.01 to 5 and from 5.01 to

10.00 (with increments of 0.01 with each range) and for two

different system sizes M ¼ 10 and M ¼ 50. To assess the

effect of each factor in isolation and the interaction among

factors (i.e. kernel, boundary, r, and lattice size) on the

emergence of transient behaviour, we used a full factorial

experimental design (Quinn & Keough 2002) considering

the two levels of r (r £ 5 and r > 5). All factorial

combinations of factors resulted in 16 different scenarios.

Twenty replicates were run for each of them.

To evaluate the effect of initial conditions of local

abundance on the observed results, we also carried out 50

simulations with different initial conditions for a subset of

parameter values (r), uniformly spread between 0.01 and

10. We report the proportion of the 50 replicates for each

value of s, which exhibited transient behaviour under

normal and Laplace kernels and for both boundary

conditions.

Following Hastings & Higgins (1994) and Saravia et al.

(2000), transient dynamics were identified by noting the

existence of abrupt and spontaneous changes between

different dynamic regimes with time scales of hundreds of

iterations (mesotransients) and with a time scale greater than

one thousand iterations (supertransients). Detection of these

changes was carried out by calculating the ratio of variances

(RV) between two adjacent halves of a sliding window of

size W (Saravia et al. 2000). Both RV and W were

determined empirically to allow detection of supertransients

(RV ¼ 10, W ¼ 1000) and mesotransients (RV ¼ 20,

W ¼ 100). For a given simulation, transient length was

defined by the time interval at which the maximum value of

RV was observed. The changes in metapopulation dynamics

were corroborated by the inspection of the temporal

dynamics and return maps (Hasting & Higgins 1994; Saravia

et al. 2000).

R E S U L T S

In agreement with previous studies, we observed supertran-

sient dynamics in this simple metapopulation model

(Fig. 2a). These changes occurred once or several times in

Figure 2 Example of dynamics for the total metapopulation

abundance observed for: (a) normal dispersal kernel with periodic

boundaries and r ¼ 9.01. (b) Laplace dispersal kernel with

dissipative boundaries and r ¼ 8.44. (c) A subset of the dynamics

shown in (b). In all simulations only the dispersal parameter value

and boundary conditions were changed and the following

parameter values were used: a ¼ 1, b ¼ 4.8, k ¼ 7, M ¼ 50.
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the time series (Fig. 2b). Similarly, mesotransients were also

observed (Fig. 2c). However, despite using local chaotic

conditions of density dependence (k ¼ 7), we observed

transients in a small proportion of the total number of the

simulations. For simulations using M ¼ 50 and a normal

dispersal kernel, we found supertransients in 10.9 and 2.6%

of the simulations across the range of r-values used and for

periodic and dissipative boundary conditions, respectively,

while for Laplace kernel we observed 3.7 and 4.9% for

periodic and dissipative boundary conditions. For a smaller

system size (M ¼ 10), the normal kernel showed supertran-

sients in 3 and 13% of the simulations (periodic and

dissipative boundary conditions, respectively) while Laplace

kernel showed 0.8 and 13% (periodic and dissipative

boundary conditions, respectively). In contrast, mesotran-

sients occurred in <2.5% of the simulations carried out with

M ¼ 50 considering all different combinations of kernel

type and boundary conditions. However, their frequency

increased for M ¼ 10 (4.8 and 13% under normal dispersal

and 2 and 13.3% for Laplace kernel for periodic and

dissipative boundary conditions, respectively).

For a large system size (M ¼ 50), the occurrence of

supertransients changes as a function of the dispersal

parameter, boundary conditions, and dispersal kernel

showing a bimodal pattern, for periodic boundary condi-

tions under normal dispersal, that changes to unimodal and

restricted to small r, under dissipative boundary conditions

(Fig. 3a). Interestingly, for Laplace dispersal, supertransients

occur more frequently for large values of r under the

dissipative boundary conditions (Fig. 3b). Furthermore, for

both dispersal kernels we found that mesotransients were

rare and restricted to a narrow, albeit different, range of

r-values (Fig. 3c, d). For the small size system (M ¼ 10),

transients are restricted to small values of r, being more

frequent under dissipative boundary conditions (Fig. 4a–d).

The results of the fully factorial experiment show that all the

analysed factors, either in isolation or in interaction, affect

the emergence of transient dynamics. In the case of

supertransients, kernel type and r have a significant

effect (F1,304 ¼ 8.7, P ¼ 0.003 and F1,304 ¼ 19, P < 0.001,

respectively), while the interaction between boundary

condition and lattice size is the most important in terms

of the explained amount of variance (F1,304 ¼ 25.4,

P < 0.001). The only significant three way interaction was

among boundary condition, lattice size and r (F1,304 ¼ 7.3,

P ¼ 0.007). Similarly for mesotransients, kernel type, r and

boundary condition have a significant effect (F1,304 ¼ 5.3,

P ¼ 0.02; F1,304 ¼ 10.4, P ¼ 0.001 and F1,304 ¼ 14.6,

P < 0.001, respectively). The most important two-way

interactions is between lattice size and r, followed by the

interaction between boundary condition and lattice size

(F1,304 ¼ 33.5, P < 0.001; F1,304 ¼ 16.9, P < 0.001). Sig-

nificant three-way interactions were found among boundary

condition, lattice size and r followed by the interaction

among kernel type, lattice size and r (F1,304 ¼ 37.4,

P < 0.001; F1,304 ¼ 10.2, P ¼ 0.002), with the former being

the most important treatment effect in terms of amount of

variance explained. For both supertransient and mesotran-

sients, the four-way interaction was not significant.

(a) (c)

(b) (d)

Figure 3 Total number of supertransients and mesotransients

observed per r unit interval for normal (a and c) and Laplace

(b and d) dispersal kernels, respectively. Open and filled circles

represent dissipative and periodic boundary conditions, respect-

ively. Parameter values used were a ¼ 1, b ¼ 4.8, k ¼ 7, M ¼ 50.

Each point represents the frequency of transients in unit intervals

of r.

(a) (c)

(b) (d)

Figure 4 Total number of supertransients and mesotransients

observed per r unit interval for normal (a and c) and Laplace

(b and d) dispersal kernels, respectively. Open and filled circles

represent dissipative and periodic boundary conditions, respect-

ively. Parameter values as in Fig. 3, but M ¼ 10. Each point

represents the frequency of transients in unit intervals of r.
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A system is highly dependent on initial conditions if for a

specific set of parameter values, simulations originating with

different initial numbers of individuals at different places

lead the system to different types of dynamics. If this were

the case, then we would find that for the same set of

parameter values, some of the trajectories show transients

while some do not, hence the results shown in Figs 3 and 4

might not accurately reflect the effect of parameter values

upon the emergence of transient dynamics. As shown in

Fig. 5, in most cases the proportion of simulations that

showed either supertransients or mesotransients, for the

same parameter values but for changing initial conditions,

was highly variable and heavily affected by the value of r.

For a large system size (M ¼ 50) and for both dispersal

kernels, supertransients seemed to be more robust under

periodic boundary conditions than under dissipative bound-

ary conditions (Figs 5a,b) following a patterns similar to that

shown in Fig. 3(a,b). However, in general the average

proportion of simulations showing supertransients was low,

ranging between 0.16 and 0.05 for the periodic boundary

conditions under the normal and Laplace dispersal kernels,

respectively. Under dissipative boundary conditions this

range was between 0.02 and 0.01 for normal and Laplace

kernels, respectively. Mesotransient dynamics, on the other

hand, are more likely to be observed for intermediate values

of r ranging between 2 and 6-under periodic boundary

conditions, and for values of r ranging between 4 and 7

under dissipative boundary conditions and normal dispersal

(Fig. 5c). On the other hand, for Laplace dispersal

mesotransients were more common for large values of r,

particularly under dissipative boundary conditions (Fig. 5d).

In general, the average proportion of simulations showing

mesotransients was low (0.09) for the periodic boundary

conditions under the normal and Laplace dispersal kernels.

Under dissipative boundary conditions, the average propor-

tion of simulations showing mesotransients ranged between

0.12 and 0.05 for Laplace and normal kernels, respectively.

Although these results cannot be readily applied to assess

the uncertainty of the results reported in Figs 3 and 4,

because of the different values and intervals of r used in

both analysis, they consistently show that for a given set of

parameter values the emergence of transient behaviour is

highly dependent on initial conditions. A similar result was

observed for a smaller system size (M ¼ 10, not shown).

In summary, our results show that both supertransients

and mesotransients dynamics are rare; their emergence

depends strongly on the kernel type, dispersal, boundary

conditions and system size, and the interaction among these

factors. Furthermore, we show that transient dynamics are

strongly affected by initial conditions.

D I S C U S S I O N

It is known that long transients can occur in spatial

ecological models with multiple attractors and hence

chaotic saddles (Kaneko 1990; Hastings & Higgins 1994;

Hastings 1998) even in the presence of noise (Hastings

1998). The existence of supertransients remained a

mathematical eccentricity until Hastings and coworkers

(Hastings & Higgins 1994; Hastings 1998, 2001) argued

that transient dynamic behaviour is widespread in nature,

suggesting that its emergence in spatial ecological models is

likely to be the rule rather than the exception. Further, the

fact that transient behaviour usually lasts for many

generations implies that the transient state of the system

could be potentially more important than its final attractor

(Hastings & Higgins 1994). Thus, if transients are the rule

rather than the exception for ecological systems, then

traditional theoretical models based on asymptotic equili-

brium behaviour might be of little relevance as tools for

understanding.

In this paper, we showed that the emergence of

supertransient dynamics is a rare event, which depends

strongly on the type, extent and intensity of dispersal, as well

as on the system size and boundary conditions. Ruxton &

Doebeli (1996) first made the point that the shape of the

dispersal kernel (as measured by r) affected the emergence

of supertransients in simple spatial models, but provided

no systematic assessment of its effect, and restricted

their analysis to a normal kernel. Similarly, Saravia et al.

(a) (c)

(b) (d)

Figure 5 Effect of initial conditions on the occurrence of

supertransients and mesotransients as a function of r. (a) and

(b) show the proportion of 50 simulations with different initial

conditions that show supertransients for normal and Laplace

kernels, respectively. (c) and (d) show the proportion of

simulations that show mesotransients dynamics for normal and

Laplace kernels, respectively. Dissipative boundary conditions are

represented by open symbols, while filled symbols represent

periodic boundaries. Parameter value as in Figure 3.
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(2000) point out that supertransients required a particular

combination of k, b and r, to emerge but did not explicitly

test for the effect of dispersal and also restricted their

analysis to a normal dispersal kernel. Our analysis shows

that, contrary to Ruxton & Doebeli�s (1996) findings,

supertransients can emerge for high values of the dispersal

parameter r, depending on the size of the system (Figs 3

and 4). However, these supertransients may be highly

sensitive to initial conditions (Fig. 5), strengthening our

conclusion that they are not the rule in simple ecological

models.

Our results also point out the importance of boundary

conditions and system size for the emergence of transient

dynamics. It may be expected that loss of individuals

through dissipative boundaries would result in a lowering of

the local growth rates and hence in the likelihood of

observing supertransients. For a small system size, however,

supertransients were more common precisely under this

scenario. Thus, loss of individuals through dispersal may still

allow supertransients to emerge. However, system size,

boundary conditions and initial conditions interact in

complex ways such that for a large system size (M ¼ 50)

transient dynamics tend to be less affected by initial

conditions under periodic boundaries, while the reverse is

true when the system is smaller (M ¼ 10, F. Labra,

unpublished results). In a recent paper (Hastings 2001), it

is reported that supertransients occur more frequently when

the initial condition includes empty patches. The inclusion

of empty sites in our simulations agree with this result.

However, the observed increase in transients only occurs

under dissipative conditions, and only for supertransients

but not for mesotransients. To assess the relative import-

ance of each of these factors is beyond the scope of the

present paper and deserves further investigation. However,

this complex dependency strengthens our point; the

emergence of transient dynamic behaviour in simple

ecological models is not a common phenomenon but

occurs for a restricted set of conditions. Saravia et al. (2000),

using the same model we used, reached a similar conclusion

after relaxing the assumption of global synchrony in

reproduction and dispersal. This implies that the set of

conditions that lead to transient dynamics are likely to be

even more restricted than we report here. Although for the

sake of comparability we have followed previous authors in

studying a one-dimensional chain of interacting populations

(e.g. Hastings & Higgins 1994; Ruxton & Doebeli 1996;

Saravia et al. 2000) it is likely that system dimensionality will

also have an effect on the emergence of transient behaviour.

However, further investigations on two-dimensional sys-

tems are necessary.

Most previous studies have not reported an exhaustive

exploration of the parameters that may result in transient

dynamics. We found that under both dispersal kernels,

supertransient dynamics occur in very low frequency in spite

of strong local nonlinearity. From this perspective, and

considering that its emergence also depends, as in our case,

on the initial conditions used in the simulations (see also

Ruxton & Doebeli 1996) and the value of the parameters k,

b and r, it can be argued that supertransients, contrary to

Hastings & Higgins (1994) and Hastings (1998, 2001), might

not be a common feature of spatial models, let alone real

ecological systems and especially so, if chaotic dynamics are

not common in nature (see Rai & Schaffer 2001; below).

The range of dispersal we have explored here ranges from

local coupling, when r is very low, to nearly global coupling

when r is very high and periodic boundaries are imposed on

the system. In agreement with Hastings (1998), who used a

system of size M ¼ 10, we found that supertransients were

harder to find when dispersal conditions tended to be

similar to global coupling (large r-values). However, this is

true only for a small system size (M ¼ 10) (compare Figs 3

and 4) and not all small and intermediate values of r result

in supertransients, and of those that do, several are sensitive

to initial conditions.

It should be noted, however, that we observed super-

transients much more frequently than Saravia et al. (2000)

did. This discrepancy arises because their study encompas-

ses parameter combinations that span regions of stable,

cyclic and chaotic dynamics. However, supertransients arise

only in the latter regime and for strong nonlinearity

(Kaneko 1989, 1990; Kaneko & Tsuda 2000). Simulations

carried out with a different set of parameters (a ¼ 0.5,

b ¼ 30 and k ¼ 2), which produce chaotic dynamics, failed

to produce either of the two complex behaviours under

study when simulations were carried out for a large system

size (M ¼ 50). On the other hand, for a second parameter

setting (M ¼ 50, a ¼ 0.5, b ¼ 15 and k ¼ 7), the occur-

rence of supertransients increased under both kernels to 8.2

and 19.5% for normal dispersal (periodic and dissipative

boundary conditions) while for Laplace kernel they oc-

curred in 19.5 and 6.6% (periodic and dissipative boundary

conditions, respectively). If supertransients occur only for

fully developed spatiotemporal chaos, then the question

should be how common are they in this regime. As we

discussed above, they are not very common.

Mesotransients, on the other hand, were seen in low

frequency, and emerged over a narrower range of dispersal

parameter values, especially for the large system. For the

two additional parameter settings we explored, mesotran-

sients were completely absent in the first setting, while for

the second parameter setting they were found in <1% of the

simulations under all combinations of kernel types and

boundary conditions. Mesotransients have been described

by Saravia et al. (2000), as sudden changes in the behaviour

of the total system over time scales of hundred of

generations, which is similar to what has been reported as
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intermittent chaos (Doebeli 1994; Cavalieri & Koçak 1995;

Gavrilets & Hastings 1995; Strogatz 1997) and spatiotem-

poral intermittency (Kaneko 1985, 1989). We are not aware

of any formal attempt to ascertain if mesotransient dynamics

are in fact intermittent chaos or spatiotemporal intermit-

tency. If it turns out to be the same to either of them, then

its prevalence and relevance in spatial ecological models

might be determined more clearly.

In conclusion, we show that supertransient and meso-

transient dynamics are not likely to be either common or

widespread in ecological systems being heavily affected by

dispersal intensity, boundary conditions, system size and

initial conditions.
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Cavalieri, L.F. & Koçak, H. (1995). Intermittent transition between

order and chaos in an insect pest population. J. Theor. Biol., 175,

231–234.

Clark, J.S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers,

J. (1999). Seed dispersal near and far: patterns across temperate

and tropical forests. Ecology, 80, 1475–1494.

Doebeli, M. (1994). Intermittent chaos in population dynamics.

J. Theor. Biol., 166, 325–330.

Doebeli, M. (1995). Dispersal and dynamics. Theor. Pop. Biol., 47,

82–106.

Earn, D.J.D. & Rohani, P. (1999). Complex dynamics in ecology.

Trends Ecol. Evol., 14, 43–44.

Fraser, D.F., William, J.F., Daley, M.J., Le, A.N. & Skalski, G.

(2001). Explaining leptokurtic movement distributions:

Intrapopulation variation in boldness and exploration. Am. Nat.,

158, 124–135.

Gavrilets, S. & Hastings, A. (1995). Intermittency and transient

chaos from simple frequency-dependent selection. Proc. R. Soc.

Lond. B, 261, 233–238.

Hassell, M. (1975). Density-dependence in single-species popula-

tions. J. Anim. Ecol., 44, 283–295.

Hastings, A. (1998). Transients in spatial ecological models. In:

Modeling Spatiotemporal Dynamics in Ecology (eds Bascompte, J.
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