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abstract: Models of metapopulations have focused on the effects
of extinction and colonization rate upon metapopulation persistence
and dynamics, assuming static landscapes wherein patches are neither
created nor go extinct. However, for species living in ephemeral
(patchy) habitats, landscapes are highly dynamic rather than static.
In this article, we develop a lattice metapopulation model, of the
patch occupancy type, based on interacting particle systems that
incorporate explicitly both metapopulation and patch dynamics. Un-
der this scenario, we study the effects of different regimes of patch
dynamics upon metapopulation persistence. We analyze the lattice
behavior by numerical simulations and a mean field approximation
(MF). We show that metapopulation persistence and extinction are
strongly influenced by the rate at which the landscape changes, in
addition to the amount of habitat destroyed. We derive MF analytical
expressions for extinction thresholds related to landscape properties
such as habitat suitability and patch average lifetime. Using numerical
simulations, we also show how these thresholds are quantitatively
overestimated by the MF equations, although the qualitative behavior
of the spatial model is well explained by the MF when the array of
habitat patches is dynamic or static but connected in space and time.
The implications for conservation are also discussed.
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Since its introduction by Levins (1969, 1970), meta-
population theory has developed as a popular framework
for analyzing the dynamics of species in patchy land-
scapes and for understanding the consequences of habitat
loss and fragmentation upon species persistence (Levin
1974; Hastings 1980; Hanski and Simberloff 1997; Hanski
1999). Since the original papers, the subject has expe-
rienced diversification from simple patch occu-
pancy–type models of single species metapopulations
(Levins 1969, 1970; Hanski 1982, 1985, 1991; Gotelli
1991; Marquet and Velasco-Hernández 1997) to two spe-
cies (Horn and MacArthur 1972; Levin 1974; Slatkin
1974; Hanski 1983; Nee and May 1992; Nee et al. 1997)
to multispecies interactions (Levin 1974; Hastings 1980;
Tilman 1994; Holt 1997). Of particular relevance here is
the extension to their spatially explicit counterparts
through the development of lattice models, such as cou-
pled map lattices (Kaneko 1993), cellular automata (Cas-
well and Etter 1993; Molofsky 1994; Darwen and Green
1996; Keymer et al. 1998), and interacting particle sys-
tems (Durrett and Levin 1994a, 1994b).

Spatially explicit models of metapopulations have
shown that landscape structure and patch dynamics can
affect metapopulation dynamics and persistence (Bas-
compte and Solé 1996; Bevers and Flather 1999), the out-
come of species interaction (Tilman et al. 1994, 1997a,
1997b; Dytham 1995; Huxel and Hastings 1998; Klaus-
meier 1998), and the behavior of territorial populations
(Lande 1987).

Usually this effect is highly nonlinear, associated with
the existence of critical thresholds determined by the struc-
tural properties of the landscape (environmental hetero-
geneity) and the demographic properties of the met-
apopulation (With and Crist 1995; Bascompte and Solé
1996). Landscape structure is used here in a general way
to refer to factors shaping the distribution of the habitat
(available patches) across space and time. In other words,
by structure, we mean spatial and temporal heterogeneity.

In agreement with Fahrig (1992), we recognize two
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broad categories of heterogeneity: spatial and temporal.
Spatial heterogeneity (habitat patchiness) is determined by
factors such as the number of available patches and their
spatial pattern in determining the distribution of habitat.
Temporal heterogeneity (habitat life span) is variability
over time in the extent and/or quality of the habitat. By
setting a random uncorrelated (spatial) pattern of habitat
distribution, with no spatial contagion, and focusing on
the effect of the amount of available habitat upon meta-
population persistence, several studies (Bascompte and
Solé 1996; Boswell et al. 1998; Bevers and Flather 1999)
have derived two major conclusions.

First, when dispersal is local, metapopulation extinction
holds for smaller amounts of habitat destruction than pre-
dicted by mean field models because of the fact that local
dispersal is less efficient than global dispersal in balancing
the extinction rates of local populations. Second, landscape
connectivity of this (uncorrelated) random pattern pre-
sents an abrupt transition as a function of the amount of
available habitat, known as a “critical phase transition” in
the percolation theory literature (see Stauffer and Aharony
1991 for an introduction to percolation theory). Basically,
connectivity among patches falls into three distinct phases:
disconnected/subcritical, critical, and connected/super-
critical (see Green 1994 for role of landscape connectivity
on ecological processes).

Spatial pattern in the distribution of habitat also has
been shown to affect (meta-) population persistence. With
and King (1999) and Hill and Caswell (1999) studied the
effect of spatial pattern (spatial contagion), presenting a
synthesis of metapopulation theory and percolation theory
coupled with neutral landscape models. The main result
of these studies is that the amount of habitat loss that a
(meta-) population can tolerate depends upon the spatial
pattern of suitable and unsuitable habitat. Fractal land-
scapes contain fewer and larger clusters of habitat patches
than random landscapes and thus maintain connectivity
for a greater amount of habitat loss (With and King 1999),
thereby enhancing (meta-) population persistence.

The models discussed so far deal with species living in
virtually permanent patchy environments, presenting dif-
ferent levels of landscape connectivity because of spatial
pattern and/or habitat suitability. In such habitats, species
persistence drastically depends upon the connectivity re-
lationships dictated by dispersal capacity and distances be-
tween patches. Thus, such models have been applied to
understand the effects of habitat destruction on popula-
tions living in stable habitats; these include many birds
and mammals (see Andrén 1994) and woody plants (Bas-
compte and Solé 1998). However, for many systems, such
as host-parasitoids, tidepool fishes, some agricultural sys-
tems, and infectious diseases with fast turnover, environ-
ments are highly dynamic.

Habitat life span is an important factor to consider in
ephemeral or disturbed habitat; temporal components of
the landscape, influencing habitat life span, interact with
spatial components, such as habitat amount and/or spatial
pattern, to determine metapopulation dynamics (for a re-
view of dynamic landscape models and their applications,
see Merriam et al. 1991).

By focusing on temporal components of landscape
structure, Marquet and Velasco-Hernández (1997) and
Brachet et al. (1999) studied the effects of landscape dy-
namics upon metapopulation persistence. These studies
agree about the importance of dynamic properties of the
landscape in determining metapopulation persistence.
However, both studies are mean field models, thereby as-
suming global dispersal.

Very few fully spatially explicit models focus on the
interaction between temporal and spatial components of
landscape structure in determining population dynamics.
Fahrig (1992; see also 1991, 1997) compared the relative
effects of temporal scale (specifically rate of landscape
change) and spatial scale (specifically measured distances
among patches relative to species’ dispersal range and
patch sizes) upon metapopulation persistence of a single
species. By using a lattice-based patch-dynamics model,
she found that the effect of temporal scale far outweighed
the effect of spatial scale on population persistence. Sim-
ulation models of this type have been extended to un-
derstand the dynamics of serpentine grasslands (Wu and
Levin 1994; Moloney and Levin 1996) and the evolution
of dispersal rate (Travis and Dytham 1999). Generally
speaking, if habitat is very ephemeral, particulars about
spatial parameters, such as dispersal distance and inter-
patch distance, may be ignored (Fahrig 1992). However,
Fahrig (1992) varied distance among patches and patch
sizes while keeping a constant amount of habitat. Thus,
the combined effects upon population persistence of vary-
ing both the amount of available habitat and patch life
span remain unknown.

Wu and Levin (1994) point out that the effect of dis-
turbance on allowing species coexistence is spatiotemporal.
Travis and Dytham (1999) show how higher dispersal rates
evolve in ephemeral habitats in response to fluctuating
habitat availability. The model of Wu and Levin (1994),
as well as those of others (Fahrig 1992; Moloney and Levin
1996), rely upon a within-patch population dynamic sub-
model that depends upon many demographic parameters.
As suggested by Wu and Levin (1994), we consider (in
this article) a simpler landscape-metapopulation model in
order to focus our attention upon how the thresholds of
habitat loss and landscape connectivity are affected by con-
sidering landscape dynamics in the analysis. Particularly,
we want to answer the following question: How does patch
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life span interact with habitat availability to determine
landscape connectivity when there is dispersal limitation?

In this article, we introduce patch dynamics into a sim-
ple spatially explicit metapopulation patch-occupancy-
type model, extending the static formalism previously used
to a dynamical context in which generation and destruc-
tion of habitat patches take place. Thus, this article con-
siders a spatially explicit version of the approaches of Levin
and Paine (1974; see also Wu and Levin 1994; Marquet
and Velasco-Hernández 1997; Hill and Caswell 1999).

We show that metapopulation persistence in dynamic
landscapes depends on the interaction between three fac-
tors: the amount of habitat in the landscape, the rate of
change of the amount of habitat, and the life history of
the species living in the landscape. We suggest that in-
cluding temporal considerations into landscape structure
has two major implications. First, it shifts the problem of
landscape connectivity from being a spatial problem of
static patches to a spatiotemporal problem dealing with
dynamic corridors connecting patches through space and
time. Second, it changes the extinction threshold, the
amount of habitat destruction a metapopulation can tol-
erate, by increasing local population extinction. In other
words, it makes this threshold sensitive to the rates of
destruction. Persistence is thus characterized by two in-
terdependent thresholds: a threshold in habitat availability
and a threshold in landscape dynamics.

The Model: The Interacting Particle System

We assume that, at time t, each spatial location r in a two-
dimensional regular lattice with periodic boundary con-
ditions is in state (see table 1), drawn from the fol-y(r)t

lowing set of possible . State 0 represents aS p {0, 1, 2}
nonhabitable site that cannot be colonized by any species;
state 1 corresponds to an empty, habitable patch, and state
2, to an occupied patch.

Patches are not static. In particular, nonhabitable lo-
cations ( ) can change to empty habitable patchesy(r) p 0t

at rate l. When we say that an event occurs at rate l, we
mean that the times ti between successive occurrences have
an exponential distribution with parameter l; that is,

. On the other hand, habitableP(t ≤ t) p 1 2 exp (2lt)i

patches (empty or occupied) can change to nonhabitable
locations at rate e. These rates characterize patch creation
and destruction processes acting simultaneously in the
conformation of the landscape of habitat patches.

Metapopulation dynamics—that is, the dynamics of
species within this patch dynamic framework—are re-
stricted to spatial locations belonging to the landscape of
habitable patches. Occupied patches undergo(y(r) p 2)t

local population extinction at rate d and empty patches
are colonized at rate br(r, y). The parameter(y(r) p 1)t

b is the propagule production rate of local populations,
and r(r, y) represents the proportion of occupied locations
in the interaction neighborhood Nr surrounding a patch
located at position r, when the process is in state y (see
fig. 1A). In particular, we consider a neighborhood, of the
(see fig. 1B) eight nearest cells (called “Moore”).

In other words, we model metapopulation dynamics as
a continuous-time stochastic process. This model is similar
to the one used by Hill and Caswell (1999) to study the
role of spatial pattern in persistence in static landscapes.
In the mathematical literature, such models are technically
known as “interacting particle systems” (Liggett 1985;
Durrett and Levin 1994b). We incorporate dynamic prop-
erties in the structure of the landscape of habitable patches;
by doing so, we are able to study the role of temporal as
well as spatial features in the distribution of habitat upon
metapopulation persistence and patch occupancy. Armed
with this model, we want to investigate how thresholds of
habitat loss are dependent upon the rate of habitat de-
struction and how the interaction between these two re-
lates to landscape connectivity.

The model described above has four parameters: patch
creation rate (l), patch destruction rate (e), propagule
production rate (b), and local population extinction rate
(d). This four-dimensional parameter space can be viewed
as the Cartesian product of two planes—one representing
the patch-dynamic parameter space and the other, the me-
tapopulation-dynamics parameter space. The relationship
between these two parameter spaces represents the rela-
tionships between landscape and demographic processes
in determining metapopulation dynamics. In this article,
we focus on the effects of different regimes of patch dy-
namics—patch creation and destruction rates—upon
patch occupancy and metapopulation persistence of a
given life history of patch colonization and local popu-
lation extinction.

Results

Patch Dynamics and Landscape Structure

Habitat dynamics are driven by the conversion of non-
habitable locations into habitable patches and by the ex-
tinction of these, turning habitable patches back into non-
habitable locations. These transitions do not depend on
particular spatial configurations. Thus habitat dynamics
can be studied analytically as being the result of a random
process across space.

In the degenerate case—when propagule production rate
and local extinction rates are both equal to 0—the inter-
acting particle system collapses into a set of independent
(one for each location r in the lattice) continuous time
Markov chains with two states representing habitable
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Table 1: Definitions of frequently used symbols

Symbol Definition

Nr Interaction neighborhood—centered at r—for the dispersal process
r Position vector for sites in the lattice
r0 Position vector of the origin of the lattice (0, 0)
S p {0, 1, 2} Set of possible states a site can adopt: destroyed, empty, occupied
l Patch creation rate
e Patch destruction rate
b Propagule production rate of local populations
d Local population extinction rate
b Adjusted propagule production rate
d̃ Adjusted local population extinction rate
t Index for time (continuous)
yt Configuration of the lattice at time t
yt(r) State of a focal site r at time t
y0 Initial distribution for the process at time t p 0

iy0 Probability a site is set to i time t p 0
y` Equilibrium distribution for the process
r(r, y) Proportion of the neighborhood with local populationsNr

br(r, y) Colonization rate experienced by a site located at r
dt Stochastic process representing the amount of destroyed sites
d̄ Long-term expected amount of “destroyed” sites in the spatial process
st Stochastic process representing the amount of suitable habitat
s̈(t) Expected amount of suitable habitat in the spatial process
s̄ Long-term expected amount of suitable habitat in the spatial process
t̄ Long-term expected life span of habitat patches in the spatial process
sc Minimum amount of habitat a mean field metapopulation can tolerate
tc Minimum patch life span a mean field metapopulation can tolerate
pt Stochastic process representing patch occupancy
p̄ Long-term expected patch occupancy in the spatial process
p̄i Long-term expected proportion of sites in state i in the spatial process
pi(t) Mean field proportion of sites at state i at time t
p̂i Mean field equilibrium proportion of sites at state i
p̂ Mean field equilibrium proportion of occupied habitat

staticp̂ Mean field equilibrium proportion of occupied habitat in the static landscapes
pc Critical value of habitat amount at which percolation occurs
R0 Basic infective number; number of propagules produced per life span

∗R0 Infective number adjusted for dynamic landscapes
g Balance between intrinsic and effective local population extinction rates

( ) and nonhabitable locations ( ). Each ofy(r) p 0 y(r) ( 0t t

these sites will have a long-term probability ofl/(l 1 e)
being habitable and of being nonhabitable (Fellere/(l 1 e)
1968). Hence, we can treat the long-term proportion of
habitable sites in the whole lattice as given by a binomial
process with parameters N (the lattice size; we used

cells in most simulations, but larger lattices were100 # 100
also explored) and m (average amount of suitable habitat).
Therefore, the long-term expected proportion of habitable
locations behaves in time as a binomial noise with expected
value and variance (see fig.2s̄ p l/(l 1 e) N(le)/(l 1 e)
2). Here, the transient behavior of the expected value s̄(t)
for the stochastic process st representing the amount of suit-
able habitat (or destroyed ) isd p 1 2 st t

¯ ¯ ¯ ¯s(t) p s 1 [s(0) 2 s] exp [2(l 1 e)t]. (1)

For two-dimensional lattices with a Moore neighbor-
hood, it is known that there exists a threshold percolation
value of site occupancy probability (Stauffer andp ≈ 0.4c

Aharony 1991; Plotnick and Gardner 1993). In our model,
at this threshold, the habitat percolates through the lattice,
forming a large connected cluster of habitat patches. Below
this threshold, the habitat is fragmented into many dif-
ferent unconnected clusters of patches. Thus, we can
change the (long-term) average connectivity properties of
the landscape by choosing l and e in such a way as to
make above or below the critical threshold pc.s̄

Since, in our model, patches are created and go extinct
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Figure 1: Structure of the model. A, Each site r in the lattice can adopt one of the states, . These represent, respectively, nonhabitableS p {0, 1, 2}
sites, empty habitat patches, and occupied patches. The transitions between these states are given by the rates l of patch creation, e of patch
destruction, d of population extinction, and of patch colonization, where b is the (local population) rate of propagule production andbr(r, y)

represents the proportion of propagule sources in the neighborhood of r when the process is in state y. B, Neighborhoodr(r, y) N N pr r

(shaded cells) of site .{z , z , … , z } r p (u, v)1 2 8

continuously, the landscape dictated by will change overs̄
time, but its average connectivity properties will remain
the same (since we fix to a constant value). Since e iss̄
the rate of patch destruction, we have as the ex-t̄ p 1/e
pected lifetime of a habitat patch. Thus, many different
landscapes share the same expected topological properties
(same ) but change at different timescales (different ),¯ ¯s t

with smaller being associated with higher patch turnovert̄

rates. Thus, in our model, habitat dynamics have both a
spatial component ( ) and a temporal component ( ). In¯ ¯s t

this article, we will explore how the dynamic aspects affect
population persistence.

From the discussion above, we can express the patch-
dynamics parameter space in the new coordinates defined
by the following transformation:

l
s̄ p , (2)

l 1 e

1
t̄ p . (3)

e

Thus, henceforth, we note that any regime of patch dy-
namics, in terms of patch creation and extinction rates,
represents a landscape with different combinations of hab-

itat amount and patch life span. This provides us with
different habitat templates to study metapopulation dy-
namics in heterogeneous and dynamic environments.

The Interaction between Metapopulation and
Habitat Dynamics

The study of the full system, including both metapopu-
lation and landscape dynamics, is analytically intractable
but still amenable to numerical simulations and mean field
approximations.

The Mean Field Approximation. Neglecting spatial corre-
lations, we can approximate the lattice behavior by writing
equations for the temporal evolution of the proportion
pi(t) of particles (sites) in each state . Thus, we obtaini P S
the following system of mean field (MF) equations:

d
p p e(p 1 p ) 2 lp , (4)0 1 2 0dt

d
p p lp 2 bp p 1 dp 2 ep , (5)1 0 1 2 2 1dt

d
p p bp p 2 (d 1 e)p , (6)2 2 1 2dt
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which (see appendix) has the unique globally stable non-
trivial equilibrium ( ):p̂ ( 02

e
p̂ p , (7)0

l 1 e

d 1 e
p̂ p , (8)1

b

e d 1 e
p̂ p 1 2 2 . (9)2

l 1 e b

Notice that corresponds to theˆ1 2 p p l/(l 1 e)0

long-term expected amount of suitable habitat s̄ p
, calculated for the spatial stochastic process (eqq.¯lim s(t)tr`

[1], [2]). So, we define as the (long-term) pro-ˆ ˆ ¯p p p /s2

portion of suitable habitat occupied by a species. Thus,

d 1 e
p̂ p 1 2 . (10)

¯bs

Now defining , which represents the effective col-˜ ¯b { bs
onization rate corrected because of the loss of propagules
arriving at nonhabitable locations, and , whichd̃ { d 1 e
is the effective rate of population extinction because of
intrinsic extinction d and habitat destruction e, we get

d̃
p̂ p 1 2 , (11)

b̃

which corresponds to the classical equilibrium expression
for metapopulation occupancy (Levins 1969, 1970).

Since , we can rewrite equation (10) as a func-¯e p 1/t
tion of habitat amount (or destruction ) and¯¯ ¯s d { 1 2 s
expected patch lifetime . Thus,t̄

1 1
p̂ p 1 2 d 1 . (12)( )¯ ¯bs t

Figure 3 shows (from eq. [12]) as a surface over thep̂ ≥ 0
(transformed) patch dynamics parameter space. Patch oc-
cupancy varies across different landscapes for two life his-
tories, increasing as and increase. Figure 3A shows this¯t̄ s
surface for a species life history with parameters b p 8
and , while figure 3B is for parameters andd p 0.1 b p 1

. Metapopulation persistence ( ) depends onˆd p 0.1 p 1 0
both habitat suitability and patch lifetime .¯ ¯s t

In the slow limit ( ), when the landscape is static,t̄ r `
equation (12) collapses to

d
staticˆ ˆp { lim p p 1 2 , (13)

¯bst̄r`

which, under rescaling by , becomes¯s̄ p 1 2 d

d
static static ¯ˆ ˆ ¯p { p s p 1 2 d 2 , (14)2

b

essentially the equation used by Bascompte and Solé (1996,
1998) to study static habitat loss. More generally,

1 1¯ˆ ˆ¯p { ps p 1 2 d 2 d 1 . (15)2 ( )¯b t

In figure 4, we can see however that different relation-
ships between metapopulation occupancy (or persistence)
and habitat destruction can be obtained, de-¯ ¯d p 1 2 s
pending on the rate of landscape change even with thet̄

same life history. In particular, if , species with lowe 1 0.5
propagule production rates b are much more sensitive to

and are unable to persist even when the entire landscapet̄

is suitable (see fig. 3B).
An important quantity in metapopulation models (anal-

ogous to that in epidemiology) is the infective number
(Anderson and May 1992). The average numberR p b/d0

of propagules a local population produces during its life
span (R0) characterizes the “infective” properties of a par-
ticular life history, providing us with an invasion criterion
that depends on the average colonization-extinction be-
havior of populations. If , the (mean field) meta-R 1 10

population persists, and if , we have metapopulationR ≤ 10

extinction.
Note that, in our formulation, the condition for pop-

ulation persistence ( ) can be written asp̂ 1 02

˜ ¯b bs b d∗ ¯R p p p s 1 1. (16)0 ( ) ( )˜ d 1 e d d 1 ed

In this form, it becomes clear, at least in the mean field
approximation, how the dynamic aspects of habitat loss,
as represented by e, make persistence more difficult. The
MF system (4)–(6) has a direct epidemiological analogue
(Levin and Pimentel 1981; Anderson and May 1992; Nee
1994; Gyllenberg et al. 1997; Marquet and Velasco-Her-
nández 1997; Hernández-Suarez et al. 1999): p0 represents
the number of immune hosts in a population, p1 the pro-
portion of nonimmune susceptibles, and p2 infected hosts;
e is the natural death rate, l the rate of loss of immunity,
and d the recovery rate. Births are balanced by deaths, and
newborns are initially immune; otherwise, there is no im-
munity. Initial immunity (in this analogy) may be thought
of as a result of behavioral factors. Under these assump-
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Figure 2: Long-term behavior of the system. Ten independent realizations of the process (IPS) for species (b p 1, d p 0 .1) in (A), static (l p
0, e p 0) and (B), dynamic (l p 0.006, e p 0.01 ) landscapes. Amount of suitable patches (top panels) s or st (A or B) and patch occupancy pt

(bottom panels) are shown from to , starting from the following initial conditions: we generate a (quasi-critical) percolation latticet p 0 t p 2,000
representing the initial habitat distribution ( ), and then we set the origin ( ) and its neighborhood to be completelys p 1 2 y p 0.4 r p (0, 0) N0 0 r0

occupied by local populations (y0(z) p 2 for all ). The smooth (dotted) curves (bottom panels) are numerical integrations of the MFz P N w rr 00

patch occupancy .p(t) p p (t)/(1 2 p (t))2 0

tions, the disease will be maintained if equation (16) is
satisfied, where is the mean infectious period.1/(d 1 e)

Defining as the ratio between the˜g { (d/d) p d/(d 1 e)
intrinsic and the effective population extinction rates, we
can rewrite equation (16) as

∗ ¯R p R sg. (17)0 0

In other words, (mean field) metapopulation persistence
in dynamic landscapes ( ) is determined by three∗R 1 10

different factors: the life history of the species living in
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the landscape (R0), the amount of habitat ( ), the ratios̄
(g) between the intrinsic population extinction rate d and
the effective population extinction rate because of thed̃

scale of landscape change ( ).t̄

We can determine the values for two different kinds of
(interdependent) extinction thresholds affecting species of
different life histories living in dynamic landscapes. First,
there is a threshold corresponding to the minimum
amount of suitable habitat smin that a (dynamic) landscape
needs in order to support a species for a life history, given
that (figs. 3, 4). Equivalently, the critical conditionR 1 10

may be expressed in terms of a threshold that relates to
the minimum expected lifetime tmin of patches in the land-
scape (figs. 3, 4). From equation (16), we obtain these
thresholds as

1 1
s p d 1 , (18)min ( )¯b t

21¯t p (bs 2 d) . (19)min

Notice however, that these thresholds are functions of each
other, so they define a curve ( ) in the patch-¯bs p d 1 e
dynamics parameter space where the surface (eq. [12])p̂
intersects the plane (see fig. 3). The region P com-p̂ { 0
posed of landscapes above the curve (i.e., ) rep-¯bs 1 d 1 e
resents the set of landscapes where persistence is possible
( ) for a given life history. Notice that the size of thisp̂ 1 0
region decreases as R0 decreases (cf. fig. 3A, 3B).

Thus, in MF scenarios, for the population to achieve
(mean field) metapopulation persistence, the following
three equivalent conditions must be satisfied: ,∗ ¯R 1 1 s 10

, .¯s t 1 tmin min

Numerical Simulations of the Particle System. Setting
, we produce a static landscape ( ) rep-¯l p e p 0 t p `

resenting heterogeneity in the (uncorrelated) spatial dis-
tribution of the (static) habitat. In this case, the MF system
(eqq. [4], [6]) collapses into Levins’s (1969) classic model
(without any term representing habitat loss) describing
metapopulation dynamics but restricted to the subset of
sites representing habitable patches. This array of patches
can have any desired amount of habitat and connectivity,
as specified by the initial distribution 0 1 2y p (y , y , y )0 0 0 0

(where represents the probability that a site is assignediy0

to state i at ) of the interacting particle system (IPS).t p 0
In particular, if we set (i.e., all sites are habitable0y p 00

patches), and rescale , we obtain the model studied′b p 8b

by Durrett and Levin (1994b) known as the “basic contact
process”; so by the complete convergence theorem (Dur-
rett and Levin 1994b, p. 335) we know the IPS will con-
verge to a nontrivial equilibrium distribution y`. We con-

jecture (supported by numerical simulations; fig. 2; see
below) that this result remains valid if the array of patches
is dynamic or static but totally connected (i.e., all patches
in the landscape are accessible by dispersal from every
patch). The distribution y` describes the long-term average
proportion of sites in each particular state ( ). We¯ ¯ ¯p , p , p0 1 2

define to be the long-term expected value¯ ¯ ¯p p p /(1 2 p )2 0

for the stochastic process pt corresponding to patch oc-
cupancy in the IPS.

If the array of patches is not totally connected, the sys-
tem experiences anomalies because of the loss of habitat
connectivity and no longer has a unique equilibrium dis-
tribution y` (see fig. 2A). Instead, it has multiple equilib-
rium distributions depending on the initial conditions.
However, three main classes of behavior can be charac-
terized by percolation theory: supercritical, critical, and
subcritical (Green 1994). If the landscape is subcritical
( ), then most of the landscape is broken into manys̄ ! pc

isolated habitat patches and small clusters of patches. If it
is a critical landscape ( ), a single large region—thes̄ p pc

spanning cluster—connects much of the landscape and
patches are clumped into clusters of all sizes. In super-
critical landscapes ( ), almost the entire landscape iss̄ 1 pc

connected, with few isolated patches remaining.
In our formulation, we produce a random (uncorre-

lated) static landscape by a percolation map characterized
by ; thus, sites are defined as available with probability0y0

( ) and unavailable with probability . This random0 01 2 y y0 0

landscape will have (on average) a constant proportion
of sites available for colonization. We start with0s p 1 2 y0

the origin ( ) and its neighborhood completelyr p (0, 0)0

occupied by local populations at time (i.e.,t p 0
for the origin and all z in the neighborhood),y (z) p 20

and we focus on the spread of these “founder populations”
through the landscape of habitat patches. This phenom-
enon has been studied in analogous problems of diffusion
in disordered media (Orbach 1986; Stauffer and Aharony
1991).

Above the critical (spatial) percolation threshold (s̄ 1

), metapopulation dynamics will be (statistically) similarpc

to the case of homogeneous landscapes since the behavior
on the spanning cluster will dominate over many reali-
zations. Thus, in this class of “supercritical (static) land-
scapes,” metapopulation dynamics are statistically well de-
scribed by the case of homogeneous landscapes. This
means that, independent of the initial conditions (where
the initial populations invade the array of patches), species
will (mostly) spread to the whole landscape. At the critical
value ( ), the landscape is self-similar, having clusterss̄ p pc

of all sizes (between one and the lattice size). Thus, dif-
ferent (but not equally probable) occupancies can be
reached, depending on the initial conditions. Figure 2A
shows 10 realizations of the process for a critical static
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Figure 3: Positive equilibrium occupancy in the mean field model ( ). The quantity (1/2)( ) derived from equation (12) is plotted as aˆ ˆ ˆp ≥ 0 FpF 1 p
function of habitat suitability and patch mean lifetime A, b p 8 and d p 0.1. B, b p 1 and d p 0.1. Notice that the -axis is in log-scale.¯ ¯ ¯s t. t

landscape, starting from the initial conditions described
above. Notice how, after a long transient that is a function
of the lattice size (we used cells), the process100 # 100
converges to different proportions of patch occupancy.
Below the critical value ( ), habitat is fragmented intos̄ ! pc

a set of disconnected clusters of characteristic sizes (de-
pendent on the value) embedded in an ocean of non-s̄
habitable locations (matrix sites). In this case, patch oc-
cupancy is seriously depressed, since habitat fragmentation
prevents species from propagating through the landscape
(see figs. 5A, 6A) keeping occupancy restricted to small
(in relation to the whole lattice) clusters.

In the case of dynamic landscapes ( ), since thel 1 e 1 0
only source for spatial correlations is due to local dispersal,
the MF equations accurately predict the temporal behavior
of the average amount of habitat (t). Notice that, settings̄

and integrating equation (6), we getb p d p p (t) { 02

equation (1). Figure 2B shows numerical simulations in
support of our conjecture that, in the case of dynamic
landscapes, the system converges to the equilibrium dis-
tribution y`. Figure 4 shows that behaves qualitativelyp̄
similarly to (derived from the MF) as a function ofp̂
different amounts of suitable habitat ( ) and patch life spans̄
. However, overestimates the expected patch occupancyˆt̄ p
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Figure 4: Expected occupancy in the spatial model. Numerical estimates of expected patch occupancy of the spatial model are plotted as functionsp̄
of expected destroyed habitat (top panels) and mean patch lifetime (bottom panels). Solid line represents the mean field prediction; and¯ ¯ ¯d p 1 2 s t

the dotted lines, the numerical simulations of the IPS. A, b p 8 and d p 0.1. In the upper panel: (diamonds) p 1, (stars) p 10, and (circles)¯ ¯t t

p 100. In the bottom panel: (diamonds) p 0.90, (stars) p 0.45, and (circles) e p 0.225. B, b p 1 and d p 0.1. In the upper panel: (diamonds)¯ ¯t̄ s s
p 10, (stars) p 100, and (circles) p 1,000. In the bottom panel: (diamonds) p 0.90, (stars) p 0.45, and (circles) p 0.225.¯ ¯ ¯¯ ¯ ¯t t t s s s

of the spatial model , as well as the extinction thresholdsp̄
(smin and tmin), since it neglects spatial correlations because
of local dispersal. This means that the three persistence
conditions described above have to be corrected by an
error term, the result of neglecting the spatial structure.

Thus, (spatial) metapopulation persistence depends on the
achievement of the following conditions: ,∗R 1 1 1 e0 R0

, , where , es, and et account for¯ ¯s 1 s 1 e t 1 t 1 e emin s min t R0

the approximation errors in the MF equations (see fig. 4).
In almost static (very large ) and highly connectedt̄
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Figure 5: Spatial pattern of the model. Spatial snapshots for species b p 8 and d p 0.1, living in three landscapes that differ only in their temporal
component . All landscapes are (spatially) disconnected, with . A, B, and C correspond, respectively, to (a static landscape),¯¯ ¯t s p 0.35 ! p t p `c

p 100 (slightly changing), and p 5 (fast landscape). From top to bottom, , , and . The shading represents nonhabitable¯ ¯t t t p 10 t p 100 t p 250
locations (white), habitable empty patches (gray), and occupied patches (black).

( ) landscapes, the disagreement between the MF ands̄ r 1
the IPS is a decreasing function of R0. Thus, highly in-
fective ( ) species are well predicted by MF equa-R r `0

tions, while in the case of weakly infective ( ) speciesR r 10

the MF prediction is poor.
In slow (Iarge and positive l) landscapes, clusters oft̄

patches change dynamically, connecting to each other
through spatiotemporal corridors that transport propa-
gules among clusters (fig. 6B). Thus, independently of the
expected properties of spatial connectivity (characterized
by ), populations always spread through the whole land-s̄
scape in the long term (fig. 5B). As the landscape changes

faster (figs. 5C, 6C), gets smaller (cf. the landscape com-t̄

ponent of fig. 6B and 6C), so the conductivity of these
corridors gets higher since more contacts occur per unit
of time (cf. the spread of occupancy between fig. 6B and
6C and between fig. 5B and 5C), but patch occupancy gets
lower because of the additive effect of the destruction rate
e upon the effective population extinction . Ifd̃ p d 1 e
the landscape changes even faster, metapopulation extinc-
tion holds when we cross the threshold (see fig.t 1 emin t

4A, 4B, lower panel). This reflects a connectivity problem
in the space-time of landscape dynamics known in physics
as “direct percolation” (Kinzel 1983; see Stauffer and Ahar-
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Figure 6: Spatiotemporal pattern of the model. Slides through the space-time of figure 5 simulations are taken by following the temporal evolution
of a one-dimensional transect through the middle of the lattice. A–C correspond, respectively, to (static landscape), p 100 (slightly changing),¯ ¯t p ` t

and p 5 (fast landscape); p 8, and d p 0.1. The shading represents nonhabitable locations (white), habitable empty patches¯t̄ s p 0.35 ! p , bc

(gray), and occupied patches (black). Time t goes from t p 0 at the top to t p 250 at the bottom.

ony 1991). Analogous to the spatial counterpart, there
exists a critical value for and (critical curve) at which¯ ¯s t

landscape dynamics percolate (in a directed sense) through
the space-time of the IPS (Kinzel 1983), allowing species
to propagate through the whole array of patches even
though the spatial component of the landscape is discon-
nected (notice that in figs. 5, 6 is below pc). Determinings̄
the values at which this phase transition occurs is a fas-
cinating area of current statistical physics, and clearly goes
beyond the scope of this article.

In the case of landscapes with parameters andl p 0
, of course the process will converge to a lattice withe 1 0

only destroyed sites ( ). But it is important not to forgets̄ p 0
that it will do it as a function of0s̄(t) p (1 2 y ) exp (2et)0

the rate e of patch destruction (see eq. [1]). This underscores
the fact that the minimum amount of habitat required for
population persistence is a function of the rate of¯e p 1/t

patch destruction (see eq. [18]). Respectively, if andl 1 0
after the landscape transient governed by ¯e p 0 s(t) p

, the system will converge to Durrett and0(1 2 y ) exp (lt)0

Levin’s (1994b) contact process in a homogeneous lattice.

Discussion

Previous studies of habitat fragmentation on static land-
scapes generally have concluded that habitat loss and spa-
tial pattern can deeply affect the long-term persistence of
metapopulations (Lande 1987; Nee and May 1992; Tilman
et al. 1994, 1997a, 1997b; Bascompte and Solé 1996, 1998;
With and King 1997; Boswell et al. 1998; Klausmeier 1998;
Bevers and Flather 1999; Hill and Caswell 1999); our
model is no exception. We agree with these studies with
respect to the existence of thresholds of habitat destruction
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above which extinction is attained. We also agree in the
inaccuracy of the MF approximation in the (quantitative)
prediction of these thresholds and the behavior of their
spatial counterparts. However, we find that these thresh-
olds are not independent of the rate of habitat destruction.
In ephemeral environments, metapopulation persistence
and patch occupancy can be very sensitive to further in-
creases in habitat destruction rates, regardless of the
amount of habitat available.

By saying “while slowly increasing the number of sites
destroyed” (Tilman et al. 1997b, p. 12) or “we increase
the number of destroyed sites” (Bascompte and Solé 1996,
p. 470), one implicitly assumes a specific rate of destruc-
tion (even though small). However this hidden assumption
is not explicitly represented in the equations governing the
spatial models used in those studies (Bascompte and Solé
1996; Tilman et al. 1997b). Thus, the mean field thresholds
(habitat destruction) reported there do not include the
factor because of the additive effect of the rate ofe/b
destruction upon local population extinction (eq. [18]).
Therefore, the inaccuracy of the MF equations used in
those studies to understand the spatial models is not ex-
clusively due to spatial correlations (as in our model) but
is confounded by the effects of both neglecting spatial
correlations and not considering the rate of destruction.
We also found that this inaccuracy is a decreasing function
of the life-history invasion criterion .R 1 10

Regarding this model, our most important result is that
long-term metapopulation persistence depends on the re-
lationship between the scale of metapopulation dynamics
(given by the life-history parameters) and landscape dy-
namics (g in eq. [17]). We found that for a given species
with a particular life history (in terms of propagule pro-
duction rate and extinction proneness), there exists a crit-
ical value tc for habitat life span above which meta-
population persistence is ensured. Below this critical value,
the landscape changes too fast in relation to the scale of
colonization-extinction process, so metapopulation ex-
tinction holds. Landscapes with dynamics close to this
critical value—ephemeral habitats—are of particular in-
terest for environmental management, since arbitrary al-
terations of the scale of landscape change—patch life
span—can lead to deep consequences for patch occupancy
and metapopulation persistence (see fig. 3). Life-history
strategies of species living in dynamic landscapes can be
deeply affected by policies of landscape management that
consist of simultaneously destroying and restoring partic-
ular habitats. In other words, restoration ecology is not
enough; we also need to decrease the current rates of hab-
itat destruction and to ensure habitat conservation and
restoration (Dobson et al. 1997).

Also notice that, in competitive-hierarchy scenarios, in-
ferior competitors rely on the space left empty by the

superior competitor as their limiting resource. Therefore,
changes in the spatiotemporal distributions of superior
competitors result in changes in the distribution of the
available habitat for inferior species. In these cases, man-
agement of the superior competitor’s distribution is equiv-
alent to managing the landscape of available sites for in-
ferior species. A similar situation holds with other “habitat
structuring species,” such as in the case of gopher-driven
disturbance in grasslands (Wu and Levin 1994; Moloney
and Levin 1996) or communities associated with islands
of Mytilus edulis (Tsuchiya and Nishira 1986). In these
communities, the rates of clearance and recruitment of
certain species—keystone habitat architects—are crucial in
determining community organization; their population
dynamics determines other species’ (effective) habitat dis-
tribution. If these rates (clearance and recruitment) are
associated with environmental gradients of productivity
(Menge et al. 1997a, 1997b), different community struc-
tures are expected to self-organize across the gradient. Cur-
rently, we are applying this rationale to study the organ-
ization of algal assemblages along the coast of Oregon,
where such a gradient and patterns have been reported
(Menge et al. 1997b).

Traditionally, landscape management tactics based on
metapopulation principles have emphasized the impor-
tance of landscape spatial pattern as affecting persistence
(McCullough 1996). However, our results and those of
Fahrig (1992) clearly show that landscape dynamics, and
in particular rates of landscape change, should be taken
into account, especially under current global change sce-
narios (Vitousek 1994) where, in addition to changes in
climate, human encroachment of natural areas is frag-
menting landscapes at an accelerated rate (Melillo et al.
1985; Skole and Tucker 1993). Our model predicts that
metapopulation extinction in dynamic landscapes will oc-
cur more often than expected by considering only the
effects of reductions in area, increase in isolation and loss
of connectivity. The rates at which the processes take place
also matter. When destroying habitat, we are not only
diminishing the amount of habitat available for coloni-
zation but also decreasing the life span of local popula-
tions. In this respect, we also agree with Fahrig (1992)
regarding the question of the best design of nature reserves;
for particular species, perhaps the size of the reserves is
less important than their persistence over time. This is
particularly true for endangered species inhabiting ephem-
eral habitats. However, Fahrig (1992) studied landscape
pattern and not habitat amount. After reviewing the effects
of habitat fragmentation in birds and mammals, Andrén
(1994, p. 362) concluded, “in most landscapes the total
area of suitable habitat will be of greater importance than
its spatial arrangement”; therefore, we studied the effects
of habitat amount.
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In this vein, the results presented in this work provide
the following new insights into the behavior of species
living in highly dynamic patchy environments (ephemeral
habitat). First, in agreement with Fahrig (1992), our model
shows that species living in ephemeral environments are
more sensitive to changes in temporal rather than spatial
components of the landscape. By looking at figure 3 or
by deriving equation (12) with respect to and , we notice¯ ¯s t

that for ephemeral landscapes (small ) the effect of chang-t̄

ing habitat life span is bigger than changing its amount
(i.e., / / when is very small). On theˆ ˆ ¯¯ ¯d ­p ­t d k d ­p ­s d t

other hand, in virtually permanent environments (large
) the effect of changing habitat amount is greater thant̄

changing its life span (i.e., / / when isˆ ˆ ¯¯ ¯d ­p ­t d K d ­p ­s d t

very large).
Second, in ephemeral environments, habitat dynamics

as reflected in patch life span also overwhelm the impor-
tance of spatial components, such as habitat amount, in
determining landscape connectivity properties and long-
term population occupancy. Patches that are spatially iso-
lated can became connected through space-time, allowing
populations to spread among patches (see figs. 5, 6). Thus,
if a species manages to survive in ephemeral environments,
it will spread to the whole landscape. Moreover, the faster
the landscape (the smaller the patch life span), the faster
that populations will spread through the whole array of
suitable habitat (patches) provided that the rate of increase
of landscape change has not been increased beyond the
threshold that engenders population collapse. Further re-
search on spatially correlated patch dynamics is strongly
needed. The study of co-varying habitat spatial pattern,
amount, and life span is the obvious next step toward the
understanding of the spatiotemporal interaction between
metapopulation and habitat dynamics.
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APPENDIX

Stability Analysis of the Mean Field Equilibrium

Since , we know that the system describedp 1 p 1 p p 10 1 2

above is actually two-dimensional. Thus, it can be written
as

d
p p l(1 2 p 2 p ) 2 bp p 1 dp 2 ep , (A1)1 1 2 2 1 2 1dt

d
p p [bp 2 (d 1 e)]p . (A2)2 1 2dt

This system has and(2) (1)$ $p p [1/(l 1 e)](l, 0) p p∗ ∗
as fixed points{(d 1 e)/b, 1 2 [e/(l 1 e)] 2 [(d 1 e)/b]}

and the following Jacobian matrix:

2(l 1 bp 1 e) 2(l 1 bp ) 1 d2 1$Df p . (A3)[ ]bp bp 2 (d 1 e)2 1

The local stability of the fixed points and de-(2) (1)$ $p p∗ ∗
pends on the sign of the dominant eigenvalue of at$Df
those points. For two-dimensional systems, we know (May
1973) that the nessesary and sufficient conditions that both
eigenvalues are negative (if real) or have negative real parts
(if complex) is that, first, and, second,$ $det {Df[p ]} 1 0∗

.$ $trace{Df[p ]} ! 0∗

Case 1: (2)$p∗

The first condition is satisfied if

(2)$ $det {Df [p ]} p 2{[bp 2 (d 1 e)](l 1 e)}. (A4)∗ 1

Since , the first condition is satisfied if and only(l 1 e) 1 0
if

¯bp 2 (d 1 e) ! 0 ⇐⇒ b ! (d 1 e)/p p (d 1 e)/s. (A5)1 1

From equation (16), this holds if and only if ; how-∗R ≤ 10

ever, considering metapopulation persistence ( ), we∗R 1 10

find that is not locally stable if .(2) ∗$p R 1 1∗ 0

Case 2: (1)$p∗

Since , we find that(1)ˆbp 1 02

(1)$ $det {Df [p ]} p 2[2(l 1 bp 2 d)bp ] 1 0 (A6)∗ 1 2

is satisfied if and only if . Since(1) (1)ˆ ˆl 1 bp 2 d 1 0 p p1 2
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, the first condition holds when (all the(d 1 e)/b l 1 e 1 0
interesting cases). So now we have to prove that the second
condition also holds. Thus,

(1)$ $trace{Df [p ]} p 2(l 1 bp 1 e) ! 0, (A7)∗ 2

which of course holds because since atl 1 bp 1 e 1 02

least . So we get that is locally stable.(1) (1)ˆ $bp ( 0 p2 ∗
Since , we know that all trajectories live1 p p 1 p 1 p0 1 2

within the simply connected region defined by2Q P R
. Using Bendixson’s criterion (Guckenheimerp 1 p ≤ 11 2

and Holmes 1983), we obtain the result that no closed
orbits exist within Q if the quantity :(­f /­p ) 1 (­f /­p )1 1 2 2

the first condition is not identically 0, and the second
condition does not change sign. From equation (A3), we
have

­f ­f1 21 p 2[(l 1 2e 1 d) 1 b(p 1 p )]. (A8)1 2
­p ­p1 2

If at least one of the parameters l, e, d, or b is not 0, we
have and , so(l 1 2e 1 d) 1 0 b(p 1 p ) 2[(l 1 2e 11 2

, which means thatd) 1 b(p 1 p )] ! 0 (­f /­p ) 11 2 1 1

is not identically 0 and does not change sign in(­f /­p )2 2

Q. Thus, if then is globally stable.∗ (1)$R 1 1 p0 ∗
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