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A method is presented to estimate the minimum viable metapopulation size based
on the basic reproductive number R0 and the expected time to extinction τE for
epidemiological models. We exemplify our approach with two simple determin-
istic metapopulation models of the patch occupancy type and then proceed to
stochastic versions that permit the estimation of the minimum viable metapopu-
lation size.
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1. INTRODUCTION

Minimum viable population size is a key principle in population and conserva-
tion biology. The principle refers to the minimum number of individuals within an
isolated population necessary to assure its long term persistence (Shaffer, 1981).

Until recently, this concept remained almost unexplored in a metapopulation
context. The first analyses on metapopulation persistence times (Nisbet and
Gurney (1982) considered a simple stochastic version of Levins’ (1969, 1970)
patch occupancy model and provided a rough approximation of the expected time
to metapopulation extinction [see discussion in Nisbet and Gurney (1982) and
Hanski (1989, 1991)]. After this attempt, the major conceptual boost in the cal-
culation of Minimum Metapopulation Size (MMS, hereafter) is due to a model
introduced by Nee and May (1992) which considered the effect of patch de-
struction upon metapopulation persistence. By focusing on patch destruction,
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this model allows us to estimate the minimum number or fraction of habit-
able patches required for metapopulation survival (Nee and May, 1992; Lawton
et al., 1994; Nee, 1994; Kareiva and Wennergren, 1995; Hanski et al., 1996; Nee
et al., 1997). Conceptually, the extinction of a metapopulation following patch
destruction is equivalent to the collapse of a disease epidemic following the
removal of susceptible hosts (Lawton et al., 1994; Nee, 1994), a process that
depends on the eradication threshold (Anderson and May, 1991) or the minimum
number of susceptible individuals that allow the disease to persist.

A method that we explore in this note is based on the basic reproductive number
R0 and the expected time to extinction τE for epidemiological models (Diekman
et al., 1990; Anderson and May, 1991). We exemplify our approach using two
simple deterministic metapopulation models of the patch occupancy type and then
proceed to stochastic versions that permit the estimation of the minimum viable
metapopulation size.

Patch dynamics as a methodological algorithm has been widely applicable in
epidemiology. Typically, a population of hosts is subdivided into discrete classes
regarding its disease status. Thus a host population of size N is formed by
adding together those individuals that are susceptible to the disease S, those that
are infected and infectious I , and those that are recovered from the disease and
are immune or dead R. More compartments are possible but here we are only
concerned with the simplest subdivisions. The interested reader may consult
Anderson and May (1991).

In this context, the patches are the different individual types that interact with
an organism, e.g., a pathogen, that invades and colonizes them. Empty patches
correspond to susceptible individuals and colonized patches to infective individ-
uals. One of the main problems in epidemiology is to characterize the conditions
that determine the invasibility of a host population by a disease agent. In the next
section we look in some detail at this problem and establish its connection with
metapopulation ecology. The results in Section 2 are all well established in both
the metapopulation and the epidemiological literature, and are presented here for
the sake of the (useful) analogy. In Section 3 we present our main results.

1.1. R0 in deterministic models.The basic reproductive number is one of the
most important theoretical concepts developed in epidemiology. It measures the
number of secondary infections that a single infectious individual produces when
introduced into a completely susceptible population (Diekman et al., 1990). If
this number is above one, the disease spreads in the host population. Otherwise,
no epidemic outbreak ensues and the disease dies out.

The basic reproductive number, usually denoted by the symbol R0, is an in-
vasion criterion: it determines if a pathogen will be able to survive in a host
population once it is introduced. In general, R0 does not provide information on
the long-term persistence of the disease although in simple cases it does. All of
the cases discussed below are of this type. In a metapopulation context, R0 may
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be interpreted as the number of newly colonized patches arising from a single
colonization event in an otherwise empty habitat or set of patches (Gyllenberg
et al., 1997; Marquet and Velasco-Hernández, 1997). As in the case of epi-
demics, one has to assume that at the beginning of the invasion the number of
empty patches is large and that extinction and colonization have a negligible
impact on the size of the total number of empty patches.

2. LEVINS’ METAPOPULATION MODEL

We start our analysis with the metapopulation model proposed by Levins (1969).
This model assumes that N, the total number of available patches, is a constant.
Let U and O denote the number of unoccupied and occupied patches respectively.
In our model an empty patch achieves its carrying capacity immediately follow-
ing colonization, thus reaching their demographic equilibrium within each patch.
Assume that at this equilibrium, each patch produces a total of β propagules per
unit time. Therefore βO represents the total number of propagules produced by
all occupied patches per unit time. These propagules find unoccupied patches at
a rate proportional to their frequency U/N, thus unoccupied patches are ‘lost’ to
colonization at a rate −βOU/N per unit time, and occupied patches increase by
the same number per unit time. If we assume that occupied patches go extinct at
a rate e then eO is the number of occupied patches that go extinct per unit time
(i.e., τE = 1/e is the expected time to extinction of any given patch). Also, sup-
pose that extinct occupied patches are immediately available for colonization at
the same rate at which they go extinct, implying a closed system. The equations
that govern this system are:

d

dt
U = −βO

U

N
+ eO,

d

dt
O = βO

U

N
− eO.

(1)

Dividing both equations by N and defining O/N = p, we note that U/N =
1− p, and the equations reduce to Levins’ metapopulation model:

d

dt
p = βp(1− p)− ep. (2)

Levins’ model postulates that the total number of patches N is constant, that all
patches are equal and that the colonization rate is proportional to the frequency
of unoccupied patches. These assumptions permit us to follow dynamically the
proportion of occupied patches instead of their actual number; also they allow
us to characterize the whole dynamics with two parameters: β and e.

Levins’ model predicts that colonization of empty patches is successful when-
ever R0 = β/e> 1. This condition also determines the existence of a nontrivial
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equilibrium point pj = 1− e/β. As we are following proportions the value e/β
is the fraction of the patch population that is empty (uncolonized). As long as
this proportion is not equal to one, the colonization of patches will be successful
(the equilibrium pj will exist and will be globally asymptotically stable). Note
that the threshold parameter is independent on both total patch population size
(N) and propagule initial size.

Suppose that due to evironmental or anthropogenic pressures the extinction rate
e is increased to e+ h [i.e., τE is decreased from 1/e to 1/(e+ h)]. We want to
determine the maximum possible rate hjc that still allows pj to be positive, that
is, the rate that guarantees persistence of occupied patches. Thus we want

β

e+ h
> 1,

assuming that R0 = β/e > 1. Solving for h, rearranging terms, and using the
definition of R0 we obtain

hjc = e(R0 − 1).

Therefore, we conclude that h < hc j is a necessary condition to escape extinction.
If the number of patches in the metapopulation is N, then we can define the
critical rate of patch extinction as Nhc j . If this rate is exceeded, then the empty
available patches generated by the extinction process would not be colonized and
the metapopulation will disappear.

To appreciate the importance of R0 as an extinction/persistence indicator, we
rescale time by taking as a unit the average time to extinction 1/e. With this
rescaling Levins’ equation stands

d

dτ
p = R0 p(1− p)− p,

with τ the new rescaled time.
Obviously, in this deterministic setting, regardless of the initial number of

colonized patches, if R0 < 1, p→ 0 and if R0 > 1, p→ 1. Once again, these
properties hold because in this model succesfull colonization (R0 > 1) implies
long-term persistence.

2.1. Threshold for the total number of patches.An alternative model to (1) that
also assumes that N, the total number of available patches is a constant, is the
following: let U and O denote the number of unoccupied and occupied patches
respectively, as N is constant we can write U = N − O.

As before, βO represents the total number of propagules produced by all the
individuals in the occupied patches. These propagules now find unoccupied
patches at a rate proportional to U (not to U/N as in Levins’ model). The
colonization rate is now given by −βOU per unit time, and occupied patches
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increase by the same number per unit time (this form of rate is known as the law
of mass action). Let eO be the number of occupied patches that go extinct per
unit time and suppose that extinct occupied patches are immediately available for
colonization at the same rate.

The change in the colonization rate from frequency-dependent to mass action
implies that the threshold condition corresponding to this new case is

R̄0 = βN

e
.

As before, invasion is successful if and only if R̄0 > 1 or, equivalently, if
N > e/β. Thus N j = e/β is the minimum number of empty patches in the
metapopulation needed for a succesfull colonization.

The mass action law provides an adequate description for the colonization rate
when the total metapopulation size is small. However, a small N introduces the
problem of dependence of colonization on the initial number of colonized patches.
To deal with this problem we must account for stochastic effects associated with
small population size.

3. STOCHASTIC MODELS OF METAPOPULATIONS

During a habitat invasion process, a relatively small number of occupied patches
constitute the initial ‘colonizing’ population from which a successful invasion of
empty patches may develop. Moreover, the initial number of occupied patches,
together with R0 and N, determine the time during which the habitat will be
populated and the average metapopulation size that can be expected during that
time. Under a stochastic regime, the initial number of colonized patches i0 can
be a very important determinant of the fate of the invasion event.

3.1. Model formulation. The stochastic version of the SIS model (Bailey, 1975)
is described here in the terminology of patch-dynamics. We present the most basic
formulation avoiding technical details. We recommend consulting Bailey (1975)
and Nåsell (1995) for complete information.

Let I (t) represent the number of occupied patches at time t in a metapopulation
with a fixed number of patches N. I (t) can take values 0, 1, 2, . . . , N. Thus,
for m,n = 0, 1, . . . , N the transition probabilities can be written as

Pmn(s, t) = P[I (t) = n|I (s) = m], 0 ≤ s ≤ t,

where Pmn(s, t) is the probability that I (t) = n at time t given that I (s) = m at
time s. The transition rates of the process are

Pm,m+1(t, t + δt) = βmδt + o(δt),
Pm,m−1(t, t + δt) = emδt + o(δt)

(3)
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where

βm = βm(1−m/N), em = em.

These rates make (3) the stochastic analogous of (1) with β the propagule pro-
duction rate, and e the patch extinction rate.

Now, given a (small) initial number of newly colonized patches i0, and given
β and e (in other words, given R0) we can ask: what is the proportion of time
in which there are i (i = 1, . . . , N) occupied patches? What is the expected
time to extinction of the metapopulation? What is the probability of extinction
of occupied patches?

The stochastic process (3) is a Markov process with a degenerated stationary
distribution with all its mass at state 0, that is, the probability of eventual ex-
tinction is 1 if N is finite. To answer the previous questions, one should look
at the time evolution of the realizations of the stochastic process conditioning in
not being absorbed (Nåsell, 1995), obtaining the so-called quasi-stationary distri-
bution (QSD) of the process. This distribution gives the (conditional) proportion
of time that the process spends in each state before being absorbed in state 0.
Here we describe and use a technique developed by Hernández-Suárez (1997)
to compute the distribution of the proportion of time that the process spent in
each state before absorption given any i0. The method consists in modifying
the original Markov process defined by (3) to one without absorbing states, but
where state 0 is now a reflecting state to i0 (i.e., the original initial propagule
size). We will denote this new process the MMP (Modified Markov Process). We
will show how to calculate the expected time to extinction τE from the stationary
distribution of the MMP for any initial propagule size i0.

3.2. The MMP and its stationary distribution. In the MMP, transitions to the
absorbing state 0 (all patches empty) are substituted with transitions to the initial
state i0. When the process goes from state 1 (one occupied patch) to state i0

then we say that a cycle has been completed. The MMP is ergodic therefore
a limiting distribution exists that can be found using standard methods. Let
5 = [π1, π2, . . . , πM ] be the limiting distribution of the MMP. Now define Sr j

as the time spent in state r in the j th cycle in the MMP, j = 1, 2, . . .. By the
strong law of large numbers, we have that

πr = E(Sr )

E
(∑

i Si
) = limn→∞ n−1∑n

j=1 Sr j

limn→∞ n−1
∑n

j=1

∑n
i=1 Si j

. (4)

As E(Sr ) is the same for both the original and the modified process, by calcu-
lating 5 we can estimate the expected proportion of time that the original process
spends on state r , which is πr . The ergodicity of the MMP guarantees that a
distribution 5 exists for each initial state.

In addition, 5 can be used to find the expected time to extinction: note that
the expected value for the sum of the time spent in all states in a ‘cycle’ in the
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MMP corresponds to the expected time to absorption in the original process, that
is E

(∑
i Si
) = τE. From (4) it follows that

E(Sr ) = πr τE;

in particular E(S1) = π1τE. Using first step analysis (see Appendix) we can
show that E(S1) = 1/e, thus obtaining

τE = (π1e)−1

Remark 1. It is important to point out the important difference between our
method and Renshaw’s (1991, p. 58) approximation to the the quasi-stationary
distribution of (3). Renshaw used an approximation in which

πkµk = πk−1λk−1 k = 2, 3, . . . , N

where λ(i ) and µ(i ) are the birth and death rates respectively for state i . Observe
that if the initial state is 1 then according to the MMP we change transitions from
state 1 to 0 with transitions back to state 1, and we also arrive to the same system
of equilibrium equations. Therefore, Renshaw’s approximation is a particular case
of ours in which the initial state is 1. Because of this, our estimate of τE is more
general and it agrees with Renshaw’s approximation when i0 = 1. In Table 1
we compare both methods to estimate τE for different i0 values. In Fig. 1 we
present the comparison between the quasi-stationary distribution of the process
(3), and that obtained through MMP for the cases R0 > 1 and R0 < 1. The
MMP approach is sensitive to changes in the initial metapopulation size (number
of colonized patches).

Table 1 shows the estimated values of τE for Renshaw’s approach and MMP.
In Fig. 2 we show the expected time to extinction τE as a function of R0 for
the MMP approach compared with that predicted by Renshaw (1991). Note that
both approximations coincide if i0 = 1.

Table 1. Values of τE , mean time to extinction for Renshaw’s approximation (τQ
E ), the

MMP approximation (τM
E ) and the average computed over a sufficiently large number

of realizations of the process τ∗E ; i0 indicates the initial propagule size (Renshaw’s
approximation is insensitive to i0 and does not change value for fixed R0 and N).

R0 = 1.1, N = 50 R0 = 0.9, N = 50

i0 τ
Q
E τM

E τ ∗E i0 τ
Q
E τM

E τ ∗E
1 3.429 3.429 3.520 1 2.179 2.179 2.183
2 · · · 5.683 5.509 2 · · · 3.517 3.601
5 · · · 9.649 9.575 5 · · · 5.845 5.729

10 · · · 12.638 12.727 10 · · · 7.718 7.691
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Figure 1. Distribution of the proportion of time that the system spends in state i condi-
tioned to non-extinction (MMP). The numbers 1, 2, 5 and 10 indicate the approximation
to the distribution for i0 = 1, 2, 5, 10 respectively, using formula (4) (continuous line).
Renshaw’s approximation is insensitive to changes in i0 and coincides with that of the
MMP for i0 = 1; (a) Distribution for R0 = 1.1 and total patch size N = 50. (b)
Distribution for R0 = 0.9 and total patch size N = 50.

3.3. Probability of extinction. By once again using first-step analysis we can
calculate an upper bound for the extinction probability of the process. First,
to fix ideas, consider the case of a habitat constituted by an infinite number of
identical patches that started with a single occupied patch. In order to achieve
extinction, all the patches that will be occupied must extinct eventually. Let θ
be the probability of extinction. Starting with a single patch we can calculate θ
by conditioning in the first event that can occur, which is either extinction of this
patch [which happens with probability e/(e+β)] or it can successfully colonize a
new patch, resulting in a total of two colonized patches [with probability β/(e+
β)]. In the first case the extinction probability is one, whereas in the second case
the extinction probability is θ2 as we now require extinction of two populations
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Figure 2. Expected time to extinction τE as a function of R0 calculated using Renshaw’s
and the MMP approach. The numbers on the right-hand side vertical axis correspond
to i0, the initial number of colonized patches (MMP). Both approximations are identical
for i0 = 1.

that started with one single occupied patch each, and we assume independence.
Therefore we have:

θ =
(

e

β + e

)
+ θ2

(
β

β + e

)
.

Solving for θ yields θ = min(1,e/β).
We have claimed that if the population successfully colonizes a second patch,

then the probability of extinction is θ2. This result is correct provided that the
habitat is a collection of an infinite number of identical patches, for in that case
the probability that a propagule lands on an empty patch tends to one. This
does not occur if the number of patches is finite. This means that the estimate
min(1,e/β) is only an upperbound for the extinction probability in a habitat with
a finite number of patches. Note that e/β = 1/R0 in Levins’ model. Thus in
the stochastic version R0 is not so much an index of invasion ‘success’ (growing
number of colonized patches) but rather a lower bound for the probability of
extinction: the larger R0 is the lower the per patch probability of extinction, and
if R0 ≤ 1 then extinction is certain.

4. DISCUSSION

Epidemiology and ecology share the methodological substrate of patch dynam-
ics. This common background can be used to adapt and adopt in reciprocity
techniques and conceptual basis for the description, analysis and explanation of
particular phenomena. Following the lead of Marquet and Velasco-Hernández
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(1997) and Gyllenberg et al. (1997), we have shown that the epidemiological
concepts of threshold parameters can be applied to metapopulation dynamics.
The concept of minimum viable metapopulation size has been used as example.
The results that we show here were developed within the context of epidemiol-
ogy. The classical SIS model has a long tradition in this area and many results
are available, both of the stochastic and deterministic kind. Of course, we are
still far from understanding even this basic model but the available results can
be applied successfully to understand metapopulation dynamics and persistence
better.

Models dealing with population extinction processes have usually focused on
single populations to model the effects of demographic, environmental and ge-
netic stochasticity [e.g., Richter-Dyn and Goel (1972), Goodman (1987), Wissel
and Stocker (1991) and Lande (1993)]. However, real populations usually have
a geographic structure composed of a finite number of interconnected subpop-
ulations forming a metapopulation system. This system can go extinct simply
because all local populations happen to become extinct at the same time (an ana-
log to the concept of demographic stochasticity in single species models). This
process has been termed inmigration–extinction stochasticity by Hanski (1991)
and has been shown to be especially important for metapopulations with a small
number of subpopulations (Nisbet and Gurney, 1982; Hanski et al., 1996). Us-
ing a different approach, inspired by epidemiological models, we have shown
an interesting alternative for the estimation of expected time to extinction that
underscores the importance of immigration–extinction stochasticity.

The role of R0 as a threshold parameter in deterministic models [e.g., model
(1)] changes when dealing with stochastic models. In a deterministic setting,
if R0 is above a threshold then the invasion process will produce a continuous
increment in the fraction of the habitat colonized, which will eventually end at
an equilibrium level associated with R0 (in Levins’ metapopulation model this
equilibrium is of the form p∗ = 1− 1/R0). In the context of stochastic models,
R0 is associated with a lower bound for the per patch probability of extinction,
equal to 1/R0 if and only if R0 > 1. If this inequality does not hold, then the
probability of extinction is 1. In contrast with the results obtained in Section 2
for deterministic models, a successful colonization event depends on N, the total
number of patches, i0, the initial number of colonized patches and R0.

The minimum viable metapopulation size is defined as the minimum number
of occupied patches needed to ensure the long-term persistence of the metapop-
ulation. Of course, in practical terms the ‘long term’ is an arbitrary length of
time. In our stochastic model (3) we characterize this minimum viable size as i0.
In Fig. 2 we can see how, for a fixed number of patches (N = 50), the expected
time to extinction increases exponentially as a function of R0, for each choice
of i0. Note that the increase in the expected time to extinction is of about 20
time units when i0 goes from 1 to 2, but only of 15 when changing from 5 to 10
due to the exponential nature of the increase. We call this property a diminishing
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return. In a practical situation a diminishing return threshold should be set based
on management criteria, thus there is no a priori (model-based) way of setting a
time threshold in this model. Nevertheless, model (2) is the simplest stochastic
model that captures the basic ideas in Levins’ metapopulation model and obvi-
ously is far from being applicable to specific field situations. It shows that the
determination of a minimum viable metapopulation size involves knowledge of
the total number of empty and occupied patches, the intrinsic demographic prop-
erties of the target species and an arbitrary time horizon desired for management
purposes. As mentioned earlier, Renshaw has produced an analytic approxima-
tion for the expected time to metapopulation extinction based on the assumption
that i0 = 1. As shown in our simulations (Fig. 2), this approximation largely
underestimates the true expected time to metapopulation extinction for all i0 ≥ 2.
The approximation is even less accurate when the probability of local extinction
is small (R0 >> 1).

For the sake of simplicity and mathematical tractability, we have illustrated
our approach using a simple metapopulation model, of the patch occupancy type,
where no local population dynamics are included. However, this could be ex-
tended to more complicated models incorporating different patch types [e.g.,
Hanski and Gyllenberg (1993) and Marquet and Velasco-Hernández (1997)]. At
present, the model could provide a good approximation to understand the pro-
cess of extinction of plant populations by considering that each site or patch is
the size of a single individual (Tilman, 1994). We hope our approach will spur
theoretical and empirical work on this subject, thus underscoring the importance
of epidemiological theory for metapopulation ecology.
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APPENDIX

Given that process (3) will visit state 1 with probability 1, we can calculate
E(S1), the expected time spent in this state before extinction, assuming that
the process is already in state 1. Using first step analysis, we have that the
expected time in state 1 is (β + e)−1 if the patch becomes empty, whereas it is
(β + e)−1 + E(S1) if the process goes to state 2 (successful colonization of an
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empty patch). Therefore, by the law of total probability

E(S1)= E(S1|patch becomes empty)P(patch becomes empty)

+E(S1|patch remains occupied)P(patch remains occupied).

Now, given that

P(patch becomes empty) = e

β + e
= 1− P(patch remains occupied)

and that

E(S1|patch becomes empty) = (β + e)−1,

and

E(S1|patch remains occupied) = (β + e)−1 + E(S1),

then we have

E(S1) = (β + e)−1 e

β + e
+ ((β + e)−1 + E(S1))

β

β + e
.

Solving for E(S1) yields

E(S1) = 1/e.
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