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The explicit consideration of space in ecological research is of paramount importance to
understand the structure and functioning of ecological systems. In this paper we develop a
simple spatially explicit metapopulation model in which colonization is constant and
independent of the number of occupied patches (i.e. propagule-rain effect, Gotelli, 1991).
Extinction, on the other hand, is modelled as a stochastic process whose intensity depends
on the number of occupied patches in the neighborhood of each focal patch. Our model is
the CA counterpart of two classical patch occupancy metapopulation models. We analytically
prove this by showing that our CA converges to the differential equation in the mean-field
approximation. The asymptotic behavior of the system, expressed as the proportion of
occupied patches, agrees with the equilibrium proportion of patches derived by using ODEs.
In both models, the existence of a rescue-effect increases the range of extinction and
colonization parameters over which the system attains complete occupancy of patches.
However, in our model this result is strongly influenced by the degree of coupling among
patches and is apparent only for local interactions. With local interactions and particular
parameter values of colonization and extinction, self-organized spatio-temporal patterns
emerge with a fractal-like clustering, even though the environment is spatially homogeneous.
Our results point out that the importance of being spatial and discrete (Durrett & Levin,
1994a) in our model is a result of local interactions.
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Introduction

The explicit consideration of space and the
development of theoretical approaches to study
its effects upon the structure and functioning of
ecological systems is currently recognized as one
of the great advances in contemporary ecology
(Levin, 1992; Durret & Levin, 1994a; Kareiva,
1994; Tilman & Kareiva, 1997). The realization

that the behavior of ecological systems is closely
linked to the spatial neighborhood of interaction
has resulted in a proliferation of studies that
consider the dynamical consequences of includ-
ing space explicitly into models of behavior,
genetics, and biotic interactions (e.g. Hassell
et al., 1991; Comins et al., 1992; Nowak & May,
1992; Solé & Valls, 1992; Durrett & Levin,
1994b; May, 1994; Tilman et al., 1994; Kareiva
& Wennergren, 1995).†Author to whom correspondence should be addressed.
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Space, by itself, is capable of giving rise to
global emergent self-organized spatial patterns
with unexpected dynamical consequences (e.g.
Rohani et al., 1997). This has been seen in
interactive particle systems (Durrett, 1988),
coupled map lattices (Kaneko, 1989; Hassell et
al., 1991; Solé & Valls, 1991), and cellular
automata models (Wolfram, 1983, 1984;
Hogeweg, 1988; Dytham & Shorrocks, 1992;
Caswell & Etter, 1993; Molofsky, 1994; Kusch &
Markus, 1996). This latter class of models,
originally developed by Ulam & Von Neumann
(under the name of ‘‘cellular spaces’’) has been
widely applied in biology (see Ermentrout &
Eldestein-Keshet, 1993) and recently in the study
of ecological systems, including population
dynamics (Caswell & Etter, 1993; Molofsky,
1994; Darwen & Green, 1996), community
ecology (Czárán & Bartha, 1992), predator–prey
dynamics (Van der Laan et al., 1995), forest
dynamics (Auger, 1995), competition (Green,
1989) and biogeography (Carey, 1996).

In this paper, we use a one-dimensional
cellular automata model (CA) to explicitly
incorporate space into a simple patch occupancy
metapopulation model (Hanski, 1996). We
analyse the dynamical consequences of local
spatial interactions and the emergence of
spatio-temporal patterns generated by coloniza-
tion and extinction processes as a function of
different spatial neighborhoods. We compare
our results with those derived for analogous
models that do not include space explicitly (e.g.
based on ODEs).

 

A metapopulation can be defined as an
ensemble of local populations (i.e. subpopu-
lations) which interact through the interchange
of individuals through migration (Hanski &
Simberloff, 1997). This concept, was originally
introduced and formalized in ecology by Levins
(1969, 1970) who developed a simple patch
occupancy model:

d
dt

p(t)=mp(1− p)− ep (1)

where p(t) represents the proportion of occupied
patches at time t. The dynamics of this system
is driven by the migration (m) and extinction

(e) parameters, and the model generates a
stable, internal equilibrium p*=1− e/m.
Assuming stochasticity in extinction rates, this
model predicts a unimodal distribution of patch
occupancy. This model was later modified by
Hanski (1982), who introduced a decay in the
extinction rate due to an increase in occupied
patches, the rescue-effect (Brown & Kodric-
Brown, 1977). The modified model is the
following:

d
dt

p(t)=mp(1− p)− ep(1− p). (2)

The stochastic version of this model predicts
the existence of two possible equilibrium
solutions. One where species are regionally
common and one where species are regionally
rare (i.e. occur in a small fraction of patches).
This is known as the ‘‘core-satellite’’ hypothesis
(Hanski, 1982). In both models [eqns (1) and (2)]
colonization (mp(1− p)) is modeled as a
quadratic function whose ecological meaning is
that colonization depends on regional occur-
rence or number of both occupied and
unoccupied patches within the metapopulation
system. However, there are other possible
formulations (e.g. MacArthur & Wilson, 1967)
where migrants come from outside the system.
In this scenario there is a ‘‘propagule rain’’
(Harper, 1977; Rabinowitz & Rapp, 1980) which
implies that the colonization rate depends, in a
linear way, on the fraction of empty patches
only:

d
dt

p(t)=m(1− p)− ep (3)

Incorporating rescue effects the above equa-
tion changes to:

d
dt

p(t)=m(1− p)− ep(1− p) (4)

Examples of situations in which the assump-
tion of propagule rain might be appropriate
include: (1) a collection of forest fragments
separated from a larger expanse of forest which
serves as a source of colonizers; (2) an
archipelago of islands near a continental source
of propagules; and (3) intertidal habitats for
organisms which are sedentary as adults but have
widely dispersed pelagic larvae.
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Based on these two models [eqns (3) and (4)],
we have developed spatially explicit stochastic
models using cellular automata that in the
mean-field approximation converge to their
ODE’s counterparts (see Appendix). We model a
metapopulation system composed of a finite
collection of N patches arranged in a one-
dimensional lattice. Similar to the models
considered above, each patch can be in only two
states, occupied or empty. Each patch can be
considered a finite automata (FA) whose state is
a random variable that can take a value of 0
(empty) or 1 (occupied), with a probability
distribution function determined by a local state
transition rule which depends on its current
state, and the state of the patches (FAs) in its
neighborhood. Thus, our metapopulation is
represented by a Cellular Automata composed
by a collection of FA, a local transition rule, and
a defined neighborhood.

The unidimensional space E is composed by
the ordered set of all patches (FAs):

E= 41,2, . . . ,(i−1),i,(i+1), . . . ,N5 (5)

We have assumed periodic boundary con-
ditions. That is, the space can be seen as a
discrete ring with N nodes, where each node
represents a patch in the space (Fig. 1). The

neighborhood is defined as the r patches to the
right and to the left of each focal patch located
in the i position. Our neighborhood V(i;r) of
radius r and around the i-patch will be defined
by the set of the following patches:

V(i;r)= 4(i− r),(i− r+1), . . . ,(i−1),

(i+1), . . . ,(i+ r−1),(i+ r)5 (6)

In our model, this neighborhood represents
the degree of dynamical coupling among patches
in the metapopulation. The state of the patches
in this neighborhood at time t and its local state
represents the inputs for each FA which through
a transition rule compute in parallel and
synchronously the probability distribution func-
tion which determines the future state of each
patch in the metapopulation.

The proportion of occupied patches in the
neighborhood V(i;r) is:

Pt
V(i;r) =

1
2r

s
u$V(i;r)

at
u (7)

where at
i represents the state of patch i at time t

(at
i =1 if occupied, 0 if empty). Then, the

probability of local extinction experienced by a
patch i, which is in state 1 at time t, is:

Pt
E,i =6(1− pt

V(i;r))e; r$ 0

e; r=0
(8)

where e represents the intrinsic extinction rate
(or probability) for a patch. In case of
considering rescue effects (r$ 0), the extinction
probability of each local patch will decay linearly
with the proportion of occupied patches in its
neighborhood V(i;r) at time t (Fig. 2). With no
rescue effect (r=0) the probability of local
extinction of each patch at time t will be constant
in time and space, and equal to e. In this case the
dynamics of each patch is independent of its
neighborhood. The size of the neighborhood is a
measure of the spatial range over which the
rescue-effect operates.

Colonization is assumed constant in both time
and space. Thus, the probability that an empty
patch at t becomes occupied at time t+1 is
equal to c. This is because we assume a
propagule rain scenario for migration.

F. 1. Structure of the cellular automata model:
(a) habitat patches; (b) spatial array; (c) neighborhood;
(d) system configuration or state at time t; (e) temporal
transition, parallel computation on which extinction and
colonization events take place; (f) system configuration for
the next time step; (g) transition rule [eqn (9)]; (h) state of
habitat patches, white=empty, black=occupied.
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F. 2. Relationship between the local probability of
extinction of a given patch and the proportion of occupied
patches in its neighborhood under rescue effects.

And the probability that an occupied patch at
time t will not go extinct at time t+1 is:

P(at+1
i =1=at

i =1)= (1−Pt
E,i) (13)

These probabilities allow us to define the
dynamics of our CA model. In general, with this
kind of model we cannot arrive at an analytical
expression for the equilibrium properties; hence
we have to resort to simulations to detect the
convergence of the model to a particular
attractor. To do this we defined the following
criteria for convergence:

Fixed-point attractor: we say that the dynamic
converged to a fixed-point attractor if the system
did not change in the frequency of occupied
patches in two successive generations.

Statistical steady-state: we say that the
dynamic converged to a statistical steady-state
when the proportion of cells in each state, as
measured by the Shannon entropy of the system,
remain bounded to very small fluctuations
around a fixed value, although the system
changes with no apparent trend over time.

Non-convergent: we say that the system did
not converge if after 10 500 generations we do
not find any of the above mentioned attractors.

We explored the four-dimensional parameter
space (N,r,c,e) of this model considering it as
the cartesian product of a structural two-
dimensional parameter space (N,r) with an
ecological two-dimensional space (c,e). We
selected 200 (c,e) random vectors from the (c,e)
parameter sub-space using a bivariate uniform
distribution and used this set of points as our
ecological scenario. We explored the (N,r)
parameter sub-space by considering a fixed
metapopulation size N=101 patches. We
explored two other metapopulation sizes (11 and
51) to assess the effect of N upon model
dynamics. We found that the dynamics of
models with 51 and 101 patches were essentially
the same, thus the results reported here are
indicative of the behavior for a large number of
patches. Four different neighborhoods were
used: no interaction betwen patches (r=0), local
interaction (r=1), medium range interaction
(r=25), and global interaction (r=50). Each
N, r combination was simulated using the same
200 (c,e) random vectors.

Taking into account both the extinction and
colonization processes as defined above, we can
define the temporal transition rule, which will
give the probability distribution of the random
variable at+1

i , as:

P(at+1
i /at

i )= [at
i (1−Pt

E,i)

+ (1− at
i )c]a

t+1
i [(1− at

i )(1− c)+ at
iPt

E,i](1− at+1
i )

where:

at+1
i ${0,1}; at

i$40,15, i=1,2,3,4, . . . ,N. (9)

This equation allows us to compute the state
of the FAs that constitute the CA and the
transition probabilities between states. Thus, the
probability that an empty patch at time t will be
colonized at time t+1 is:

P(at+1
i =1=at

i =0)= c (10)

The probability that an empty patch at time t
will not be colonized at time t+1 is:

P(at+1
i =0=at

i =0)= (1− c) (11)

The probability that an occupied patch at time
t will become extinct at the next time step is:

P(at+1
i =0=at

i =1)=Pt
E,i (12)
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Results

   -

Our model converged to a fixed point attractor
only in a few cases (10%) and only for certain
combinations of the (c,e) parameter sub-space.
In most cases (90%) the system did not converge.
The distribution of these convergent points over
the (c,e) parameter sub-space and the percentage
of simulations that attain convergence depend on
the spatial coupling among patches (i.e. on the
neighborhood size). When we do not incorporate
spatial coupling between the patches (r=0),
which means no rescue-effects, few cases
converged to a fix-point attractor [Fig. 3(a)]. The
fixed point attractors were of two types:
metapopulation extinction or complete occu-

pancy. Extinction occurred for all simulations in
which cQ 0.1, whereas for eQ 0.1 the metapop-
ulation system attained complete occupancy.
With local coupling between patches (r=1), the
area of the (c,e) parameter space where
convergence was attained increased from 10% in
the case of no interaction (r=0) to 60% in this
case [Fig. 3(b)]. This area of convergence
includes all simulations in which ce e. In the
cases of medium range (r=25) and global
interactions (r=50) respectively, convergence
decreased again to 10% and occupied the same
area of the parameter space as seen in the
previous cases [Fig. 3(c), (d)]. For those
simulations in which the system did not converge
to a fixed point or to a statistical steadystate, and
for r$ 1 the proportion of occupied patches

F. 3. Distributions over the (c,e) parameter space of those distributions that converged to a fixed-point attractor: (a)
r=0; (b) r=1;(c) r=25; (d) r=50. N=101 for all cases.
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F. 4. Time series of the proportion of occupied patches in the metapopulation: (a) r=0, c=0.4, e=0.6; (b) r=1,
c=0.4, e=0.6; (c,d) autocorrelation functions (ACF) of (a) and (b), respectively.

continuously changed over time, with a white-
noise-like structure centered at p*= c/(c+ e),
which is the equilibrium proportion of patches
expected for its ODE counterpart [eqn (3),
Fig. 4(a)]. In contrast, for r=1 [Fig. 4(b)] the
time series of patch occupancy was significantly
correlated for short temporal lags [LagQ 15;
Fig. 4(d)]. This suggests the emergence of spatial
structures (see below).

The analysis of the long term behavior of the
system, taking all cases together, is shown in
Fig. 5. Here it can be seen that the area of the
parameter space where extinction occurs it is not
affected by the existence of rescue-effects and
does not change for different neighborhood sizes.
However, the area of the parameter space where
the system attains complete occupancy, as
mentioned above, is greater when rescue-effect is
present and depends on local interactions [r=1;
Fig. 5(b)]. For larger neighborhood sizes
rescue-effects are not important [Fig. 5(c) and
(d)]. In all cases the long term proportion of
occupied patches is unimodal, with a mode
centered at 100% occupancy (for r=1) or at the

expected equilibrium proportion of occupied
patches for the other cases (Fig. 6).

- 

Three different spatio-temporal patterns char-
acterized the dynamic behavior of our model.
When convergence was attained, the transient
behavior of the system gave rise to a spatio-
temporal pattern in which extinction events
propagated in time, resembling a diffusion
limited aggregation pattern [Fig. 7(a)]. For the
non-convergent cases, two spatio-temporal pat-
terns where found, depending on the existence of
rescue-effects and the scale of interaction (r). In
the case of local interactions (r=1) the system
reached a dynamical attractor characterized by
the emergence of a fractal-like self-similar
pattern of occurrence over the space–time, with
an aggregation of occurrence in clusters of all
sizes and similar shapes [Fig. 7(b)]. For all other
neighborhood sizes (including r=0) the spatio-
temporal pattern was characterized by a random
mosaic of occupied and unoccupied patches [Fig.
7(c)].
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Discussion

We presented a simple spatially explicit
metapopulation model in which colonization is
constant and independent of the number of
occupied patches (i.e. propagule-rain effect;
Gotelli, 1991) as assumed in island–mainland
metapopulation models (Hanski & Simberloff,
1997). Extinction, on the other hand, is modelled
as a stochastic process whose intensity depends
on the number of occupied patches in the
neighborhood of each focal patch. Our model is
the CA counterpart, that in the mean-field
approximation corresponds with two classical
patch occupancy metapopulation models (see
Gotelli, 1991). The analysis of this model
allowed us to make the point that the spatial
scale of the rescue-effect, measured through the
extent of dynamical coupling among patches, has
important implications for metapopulation per-
sistence and long-term behavior.

In general, the long term behavior of the
system, expressed as the proportion of occupied
patches (Fig. 5) agrees with the equilibrium
proportion of patches derived by using ODEs
[eqns (3) and (4); Gotelli, 1991]. In both models
the existence of a rescue-effect increases the
range of extinction and colonization parameters
over which the system attains complete occu-
pancy of patches. However, in our model this
result is strongly influenced by the degree of
coupling among patches and is apparent only for
local interaction (i.e. r=1). This can be
explained as follows. With no spatial coupling
(r=0), the future state of each patch depends on
the assigned probabilities of extinction and
colonization and is independent of its neighbor-
hood. However, when rescue effects exist, and
r=1, the dynamics of each patch depends on the
state of its two closest neighbors and its own
state. This implies that each occupied patch in its
neighborhood will decrease the extinction prob-

F. 5. Long-term proportion of occupied patches (p) over the (c,e) parameter space: (a) r=0; (b) r=1; (c) r=25; (d)
r=50. N=101 for all cases.
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ability in a proportion equal to 50% [eqn (8),
Fig. 2]. As r increases, the proportional
contribution of each occupied patch decreases by
a factor of 1/2r [eqn (7), Fig. 2]. Hence, for large
neighborhoods, 1/2r tends to small values,
approaching zero in the limit of large r. The net
effect of this is a progressive dilution of rescue
effects as r increases. This explains why the
dynamical behavior of our model, expressed as
the proportion of occupied patches, is the same
for r=0 and for large neighborhoods [Fig. 5(a),
(c) and (d)]. Further exploration of our model for
r=2, 3 and 4 (Keymer et al., unpubl. data)
showed a progressive reduction of the total
occupancy area (p=1). Paraphrasing Durrett &
Levin (1994a) the dynamics of our model
underscore not only the importance of being

discrete and spatial, but also the importance of
being local.

Patch occupancy models provide a simple way
to illustrate the dynamical consequences of
metapopulation structure. However, they usually
make unrealistic assumptions. By assuming a
fixed number of patches and by focusing on the
proportion of occupied patches, patch occu-
pancy models do not allow for dynamics of
patches independent of that of the species oc-
cupying them (Marquet & Velasco-Hernández,
1997) and, as pointed out above, the per capita
contribution of an occupied patch to the rescue
effect decreases as the number of patches in the
metapopulation (or neighborhood in our case)
increases. Our eqn (8) implies that the prob-
ability of extinction equals zero when the

F. 6. Frequency distributions of the proportion of occupied patches: (a) r=0; (b) r=1; (c) r=25; (d) r=50. N=101
for all cases.
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F. 7. Spatio-temporal patterns (occupied patches in black): (a) r=1, c=0.5, e=0.5; (b) r=1, c=0.4, e=0.5; (c)
r=0, c=0.4, e=0.6.

neighborhood is full. This same assumption is
present in Hanski’s (1982) rescue effect model.
A more realistic way to model rescue effects
would be to assume that extinction probability
decreases with the proportion of occupied
patches in such a way that, even when the
neighborhood is full, there is still some intrinsic
background probability of extinction (see Gotelli
& Kelly, 1993). Similarly, for the sake of
comparing our model with its ODE counterpart,
we assumed that all patches are identical. The
consequences of relaxing these assumptions,
through the incorporation of differences in
patch quality (e.g. a source–sink dynamics,
Pulliam, 1988; see Marquet & Velasco-
Hernández, 1997 for a patch occupancy ap-
proach) and a more realistic rescue-effect need
further research.

The asymptotic behavior of our model
converged to a fixed point attractor or did not
converge at all. However, other behaviors are
also possible, such as periodic attractors. We
looked for this but did not find any periodic

attractor after examining correlograms for the
time series of patch occupancy in each simu-
lation. However, it can be shown analytically
that a period two attractor exists when
c= e=1, and r=0.

- 

One-dimensional CAs are well known for
giving rise to self-organized spatio-temporal
patterns (e.g. Wolfram, 1983, 1984). Our model
is not the exception. However, self-organized
spatio-temporal structures with a fractal-like
pattern emerge only under local (r=1) inter-
actions and for particular values of colonization
and extinction. This pattern is verified in
temporal autocorrelations in patch occupancy
[Fig. 4(b) and (d)]. As shown in Fig. 7(b), the
spatio-temporal pattern is characterized by the
existence of occupancy clusters of different
temporal and spatial extents. The important
point here is the emergence of patterns of
correlated occurrences without explicitly incor-
porating heterogeneity in our model.
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Even in very simple models we can obtain
important new information when we take space
into account in our formulations. However, to
make meaningful comparisons with differential
equation models, it is important to demonstrate
that the CA formulation truly corresponds to the
ODE formulation. We have demonstrated such
a correspondence through a mean-field approxi-
mation. This leads us to conclude that the CA
model would exhibit the same dynamics as the
ODE in the case where the system is homo-
geneous and well-mixed, such that every local
neighborhood has the same statistical properties
as the whole lattice. The fact that the CA model
diverges from the behavior predicted by the
ODE indicates the importance of spontaneous
formation of spatial heterogeneity, where local
neighborhoods have quite different properties
depending on spatial location.

As mentioned earlier, our result agrees with
that of Gotelli (1991) in relation to the
importance of rescue effects in increasing
regional occurrence of species. Nevertheless, we
show that this importance depends also on the
topological relationships among patches. We
found that the rescue effect has its most
important influence when the topological struc-
ture is the same in which self-organized
spatio-temporal patterns appear.
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APPENDIX

Derivation of the Mean-field Approximation

One way of demonstrating correspondence
between a cellular automata model and a
classical differential equation is to show that the
CA converges to the differential equation in the
mean-field approximation. The fundamental
assumption of a mean-field approximation is
that all neighborhood configurations occur at
random, with probabilities of occupancy equal
to the overall proportions in the lattice as a
whole. In particular, for our CA metapopulation

model we have to prove that it converges in the
mean-field approximation to:

d
dt

p(t)= c(1− p)− ep(1−wp)

which corresponds to eqn (3) when w=0, and to
eqn (4) when w=1.

In order to generate the mean-field approxi-
mation, the overall probability of an empty cell
being occupied should be c. This, when
multiplied by 1− p (the probability of having an
empty cell), yields the colonization rate of the
ODE. Similarly, the overall probability of an
occupied cell going extinct should be e(1−wp),
yielding an extinction rate of ep(1−wp).

For a given neighborhood, V(i,r) we define:

V*(i,r)= 4a$V(i,r)/aa =15

which is the set of occupied cells in the
neighborhood V(i,r),

h=(V*(i,r)

the number of occupied cells in the neighbor-
hood, and

(V(i,r)=2r

the total number of cells in the neighborhood.
For an empty neighborhood, h=0, there is

only one possible arrangement of 2r empty cells,
which occur with probability (1− p)2r. For one
occupied cell, h=1, there are 2r possible
arrangements, each of which occurs with
probability p(1− p)2r−1. In general, for h

occupied cells, there are

2r!
h!(2r− h)!

possible arrangements, each with a probability
ph(1− p)2r− h of occurence.

Given a focal cell, if it is empty, we assume a
constant local colonization probability of c for
any neighborhood configuration. To demon-
strate that this converges to the desired
colonization rate in the mean-field approxi-
mation, we must show that

c s
2r

h=0

2r!
h!(2r− h)!

ph(1− p)2r− h = c
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which follows directly from the binomial
theorem.

If the focal cell is occupied, we assume that the
local extinction probability is (1−w (h/2r))e. To
demonstrate that this yields the desired mean-
field approximation, we must show that

e s
2r

h=0

2r!
h!(2r− h)!

(1−w
h

2r
) ph(1− p)2r− h

= e(1−wp)

Canceling e from both sides, we get

s
2r

h=0

2r!
h!(2r− h)!

(1−w
h

2r
) ph(1− p)2r− h =1−wp

We can separate the summation into two terms
as follows

s
2r

h=0

2r!
h!(2r− h)!

ph(1− p)2r− h

− s
2r

h=0

2r!
h!(2r− h)!

w
h

2r
ph(1− p)2r− h =1−wp

By the binomial theorem, the first sum equals
1, so the whole equation will be true if and only
if the second sum equals wp.

s
2r

h=0

2r!
h!(2r− h)!

w
h

2r
ph(1− p)2r− h =wp

Simplifying and reordering terms, we get

wp s
2r

h=0

(2r−1)!
(h−1)!(2r−1−(h−1))!

ph−1

(1− p)2r−1−(h−1) =wp

changing variables h=c+1, the sum can be
written as

wp s
2r

c+1=0

(2r−1)!
(c+1−1)!(2r−1−(c+1−1))!

pc+1−1(1− p)2r−1−(c+1−1) =wp

reordering and canceling vanish terms we get

wp s
2r−1

c=0

(2r−1)!
c!(2r−1−c)!

pc(1− p)2r−1−c =wp

Which, since the binomial theorem holds that
the summation is 1, so the equation clearly holds.


