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Over the last century, many bird species have been introduced into the Hawaiian islands. The data
indicate a scenario in which island communities build up to a critical number of species, above which
avalanches of extinction occur. Plotting the distribution of extinction event sizes approximates a
power-law in accordance with the notion of a self-organized critical system. The lengths of time between
introduction and extinction for different species also exhibit power-law scaling. These results suggest
that ecological communities are not characterized by a well defined equilibrium, but rather by a detailed
balance which is minimally stable to perturbations such that the introduction of species can trigger
extinction cascades.
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Introduction

In a series of papers, Moulton & Pimm (1983),
Simberloff & Boecklen (1991) and Moulton (1993)
considered the role of competition in structuring
communities of birds introduced to the Hawaiian
Islands. The primary argument in this debate has
been whether extinction rate increases nonlinearly
with an increasing number of species. The logic of this
argument stems from the fact that the number of
potential interactions between species increases
proportional to the number of species squared. Thus,
a quadratic relationship between extinction rate and
species richness implies that competition is forcing
some species to extinction. Moulton & Pimm (1983)
found that for six islands in the Hawaiian
Archipelago, a quadratic function provided a better
fit to the data than did a linear model. However,
Simberloff & Boecklen (1991) disputed the results

based on non-independence and other problems with
the data. When a repeated-measures model was used,
the data were insufficient to support a quadratic fit
over a linear model. Moulton (1993) recently
responded to these criticisms, reasserting that the data
support competition.

In the present paper, we offer an alternative
interpretation of the Hawaii data. Although our
results have implications for the question of
competition, we are more concerned with the kind of
dynamical system that results from a process of
community assembly. In particular, we show that
several patterns in the data support Bak et al.’s (1988)
theory of self-organizing criticality. We make three
observations that show that the colonization-extinc-
tion record of the introduced Hawaiian avifauna is
consistent with self-organized criticality: (1) a
discontinuity in the plot of extinction rate vs. species
richness suggesting a critical number of species, above
which cascades of extinction occur, (2) an approxi-
mate 1/f or power-law distribution of extinction event
sizes, and (3) a power-law distribution of species
waiting times to extinction.
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Self-organized Criticality

Nature appears to be intermittent, i.e., it is
characterized by large fluctuations interspersed
among periods of relative stasis (Bak, 1991; Holling,
1992). At the broadest evolutionary scales, adaptive
radiations appear, in some cases, to occur in short
bursts of evolutionary activity, a phenomenon known
as punctuated equilibrium (Gould & Eldredge, 1977;
Eldredge & Gould, 1988). Raup (1982) has shown
that the fossil record is marked by intermittent mass
extinction events. He noted that ‘‘[e]xtinction may be
episodic at all scales, with relatively long periods of
stability alternating with short-lived extinction
events.’’ (Raup, 1986, p. 1528). Meteorite impacts
have played a role in extinction events (Alvarez et al.,
1980). However, unless one is willing to accept that all
extinction events are of extraterrestrial origin, we are
confronted with the question: is intermittency
intrinsic to the organization of ecological communi-
ties? If ecological communities are generally charac-
terized by intermittent extinctions, then we should
observe patterns similar to those described for the
fossil record in small, locally interacting species
assemblages.

A model to explain the origin of intermittent
fluctuations in non-equilibrium systems has been
given by Bak et al. (1987, 1988). Bak and co-workers
proposed that many complex systems naturally evolve
to a critical state defined by the spontaneous
emergence of intermittent fluctuations across a broad
range of spatial and temporal scales without any ‘‘fine
tuning’’ necessary from outside the system. They have
termed this phenomenon ‘‘self-organized criticality’’
(SOC). A metaphor for SOC is a pile of sand to which
sand grains are continually added (Bak et al., 1987,
1988). Initially when the pile is flat there is relatively
little interaction among different regions of the pile
and adding a single grain will only affect a few other
grains nearby. The system is in a subcritical state. As
the pile increases in height, avalanches of grains spill
down the sides such that adding a single grain can
initiate a cascade affecting many other grains.
Eventually, the pile reaches a critical state and
essentially does not get any steeper. The critical state
is defined by a stationary statistical distribution of
avalanches which propagate across all spatial and
temporal scales (only limited by the finite size of the
pile). Alternatively, the pile could be started in a
supercritical state by forming a vertical cylinder of
sand. A supercritical pile is highly unstable and is
expected to collapse down to a critical state as grains
are added. Thus, one can think of the critical state as
an attractor for the dynamics of the pile.

For a critical system, the distribution of fluctuation
sizes is described by a power-law of the form

D(s)1 s−a (1)

where s is the size of an ‘‘avalanche’’ and D(s) is the
frequency of it’s occurrence. The negative exponent of
the distribution leads to many small events or
fluctuations punctuated by progressively rarer large
events, hence the notion of intermittency.

To estimate a, the system in question is observed
over a period of time and the frequency of events of
size s is recorded. In the sandpile example, the events
are avalanches of sand grains, and the size of an event
is the number of grains in a particular avalanche.
Frequency is estimated as the number of events of size
s divided by the total number of events. The slope of
the data on a log-log plot gives the estimate of a. For
large systems and in simulation models, the estimate
of a can often be taken by hand; for smaller systems,
regression can be used. Linear regression on the
log-transformed data is preferable to nonlinear
regression on the raw data because the residual error
will be distributed as a quadratic and the minimum
error is guaranteed. This is not the case with nonlinear
regression.

Critical fluctuations are often referred to as obeying
a ‘‘1/f ’’ distribution, i.e., the size of an event decreases
as the inverse of the frequency with which it occurs.
This is simply a restatement of the expression given
in eqn. (1). Since D(s)= f, from eqn. (1) we have
s=1/f

1
a . Notice that for the 1/f distribution, the

scaling exponent is the inverse of that found for the
event-size frequency distribution [eqn. (1)].

Self-organized criticality occurs in systems that
build up stress and then release the stress in
intermittent pulses. An example is stress that builds
up in the earth’s crust and is released in earthquakes
(Feder & Feder, 1991). This is described by the
well-known Gutenberg–Richter law of geophysics
that states that the number of earthquakes N with
energy greater than E is given by

N(E0 qE)1E−B (2)

where B is the scaling exponent describing the
distribution (Olami et al., 1992). There are numerous
other examples in the physical sciences (Poliakov &
Herrmann, 1994; Cannelli et al., 1994; Noever &
Cronise, 1994; Wang & Shi, 1994). Recently, SOC
was evoked to explain patterns of tree-fall gap
formation in tropical forests (Solé & Manrubia,
1995).

The ‘‘avalanches’’ of extinction observed by Raup
may also be indicative of a self-organized critical state
(Kauffman & Johnsen, 1991; Flyvbjerg et al., 1993;
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Bak & Sneppen, 1993). Kauffman & Johnsen (1991)
considered interacting fitness landscapes of coevolv-
ing species and showed that such a system could lead
to the complex dynamics associated with SOC.
Distributions of extinction event sizes in Kauffman &
Johnsen’s model agreed qualitatively with the
distributions found in Raup’s (1982) data (Kauffman
& Johnsen, 1991). In coevolutionary models, the
dynamics are generated principally by species
interactions as opposed to transfers of momentum in
physical systems. However, it is a key concept in SOC
that the dynamics are largely independent of the
components comprising the system. Thus, from the
standpoint of self-organization, it does not matter
whether we are concerned with faulting in the earth’s
crust, the interactions among species in an assem-
blage, or the dynamics of sand piles. The macroscopic
behavior of critical systems all obey the same
dynamical distributions. In the case of coevolving
species, exact analytical solutions have been given,
demonstrating that extinction cascades following the
distributions in eqns (1) and (2) can emerge
spontaneously is simple models of coevolution
(Flyvbjerg et al., 1993; de Boer et al., 1994). We
believe that these results may also apply to a process
of community assembly occurring over shorter
timescales.

Extinction Dynamics in the Hawaiian Islands

Moulton & Pimm (1983) have described an
extensive record of avian species (Columbiformes and
Passeriformes) introductions and extinctions for the
Hawaiian Islands [later expanded by Simberloff &
Boecklen (1991)]. The introductions were all assumed
to be intentional releases by human settlers, although
in some cases, birds may have spread to other islands
via natural dispersal. The data cover a period from
1850 to 1984 and include dates of colonization and
(where appropriate) extinction for 69 species of
birds introduced to the islands of Oahu, Kauai,
Maui, Hawaii, Molokai, and Lanai. Because the
chronology was assembled from literature citations
and historical accounts, it was difficult to gauge the
overall accuracy of the data. Both Simberloff &
Boecklen (1991) and Moulton (1993) have raised
questions about the accuracy of some records in the
data. Nonetheless, the introduction and extinction
record for introduced Hawaiian birds is perhaps the
best data available to study the assembly of ecological
communities at a mesoscale: it is one of the few data
sets for which approximate dates of both introduction
and extinction are available for a large number of
species.

The record of introductions and extinctions in the
Hawaiian islands is unique in that it chronicles the
complete assembly of a community starting from a
nearly ‘‘empty’’ species assemblage. Native Hawaiian
birds were driven extinct by humans, initially by
Polynesian settlers and later by immigrants from
North America. A principle culprit in the decline of
native birds has been clearing of land for agriculture
and human settlement. Native Hawaiian birds do
persist in undisturbed highland habitats; however, the
non-native species were introduced and persist in
disturbed lowland habitats and interact little with
native species (Moulton & Pimm, 1983). Thus, the
confounding effect of interactions among native and
introduced species was not present in the data.
Furthermore, clearing of land during the period of
introductions and extinctions has, if anything,
increased the area of suitable habitat available to the
introduced species. The record of extinctions is
therefore unlikely to be the result of changes in
available habitat.

Of the 69 bird species introduced to the Hawaiian
Archipelago between 1850 and 1984, 35 became
extinct. Over the first 70 years, the system gradually
accumulated species with no extinction. After roughly
eight species had been successfully introduced,
numerous extinction events occurred with extinction
rate generally increasing as more species were added
(although there are ‘‘windows’’ with zero extinction
rate above eight species—Fig. 1).

F. 1. Extinction rate of introduced Hawaiian avifauna vs the
number of introduced bird species. Extinction rate was taken as
number of extinctions per species per year measured over 10 year
intervals. The data for Figs 1–3 were taken from Simberloff &
Boecklen (1991).
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F. 2. Distribution of extinction event sizes of the introduced
Hawaiian avifauna. The trend line, N(s)= s−0.91, is a least squares
regression of the log-transformed data (r2 =0.90, p=0.002).

numerous than decades in which greater than five
species became extinct (Fig. 2). The data represent 59
individual extinction that occurred on six islands in
the Hawaiian archipelago. Extinction event size was
defined as the number of species reaching extinction
during a given decade on a given island. Treating each
island separately, there were 20 island-decades
between 1920 to 1990 during which species became
extinct. The distribution function of extinction events
approximates a power-law with an exponent of
−0.91, suggesting critical scaling. The size of
extinction cascades therefore scales as 1= f 1.09 where
f is frequency. An approximate randomization test
(Noreen, 1989) was used to test the null hypothesis
that extinction event size was not related to
frequency. The probability that the observed corre-
lation between size and frequency was due to chance
was p=0.002. (Of 10000 randomizations, 15 resulted
in a correlation greater than or equal to the observed
correlation.)

Moulton & Pimm (1983) cited a number of reasons
why exogenous perturbations were unlikely as the
cause of these extinctions. Although we cannot rule
out human disturbance or climatic variability in
precipitating extinction cascades, the presence of
minor external disturbances would not contradict our
basic premise that the interaction among species leads
to a critical system that is susceptible to even minor
perturbations. We envision a scenario in which
interaction ‘‘stress’’ builds up among species occupy-
ing localized regions of niche space (i.e., species with
similar phenotypic traits) which when reaching a
threshold is released in a cascade of extinction.

Another indicator of critical dynamics is a
power-law distribution of lifetimes (de Boer et al.,
1994). Waiting times to extinction for introduced
Hawaiian birds exhibit a power-law distribution with
most species persisting only a few years and a few
species persisting q60 years before going extinct
(Fig. 3). A null model for extinction which is
independent of any species interactions is a simple
uniform probability of extinction for each species in
each time period. This would lead to an exponential
distribution of waiting times. However, an exponen-
tial model explained less of the variation (r2 =0.56)
than did a power-law (r2 =0.81). Using an approxi-
mate randomization test, the probability that the
observed power-law relationship between persistence-
time and frequency was due to chance was p=0.023.

These results would also seem to have important
implications for the ‘‘all-or-none’’ pattern of extinc-
tion forwarded by Simberloff & Boecklen (1991). If
some introduced species are poor colonizers, and
therefore became extinct independent of interaction

Because of the limited number of extinction records
and the possible interaction among islands due to
dispersal, we pooled the data across all islands. If the
islands were independent, pooling the data would
mask some of the variability among islands.
Extinction rate vs. number of species for the pooled
data is plotted in Fig. 1. We note that the relatively
sharp transition from zero extinction rate to a positive
extinction rate is suggestive of a transition from a
subcritical system to a critical system. Such patterns
are associated with dynamical phase transitions and
criticality (Goldenfeld, 1992). Presumably, there also
exists a supercritical state at a higher species richness
which would be characterized by a rapid collapse to
a lower number of species.

It is also worth noting that fitting a continuous
function through these data as was done by Moulton
& Pimm (1983) may be inappropriate because
functions describing critical transitions are generally
discontinuous or diverge at higher derivatives
(Goldenfeld, 1992). This might explain why Sim-
berloff & Boecklen (1991) found negative extinction
rates at low species richness when fitting the data.
However, the pattern strongly implies nonlinearity,
giving support to the argument of Moulton & Pimm
(1983) that nonlinear species interactions structures
these assemblages.

The distribution of extinction event sizes for these
data exhibit intermittency (i.e., many small and a few
large) in concordance with Raup (1982). Decades in
which only a single species became extinct were more
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F. 3. Distribution of waiting times to extinction for 59 birds
species that became extinct between 1920 and 1990 on six Hawaiian
islands. Waiting time to extinction is the number of years between
introduction and extinction for a given species. The trend line,
N(t)= t−1.16, was fitted via regression to the log-transformed data
(r2 =0.81, p=0.023).

the height of the pile and addition of sand grains
which raises the height of the pile. The structure of the
pile emerges from the interaction of these forces. It is
important to realize that, although gravity acts
uniformly on all grains in the pile, the probability of
an avalanche occuring is not spatially uniform across
the pile. Some areas of the pile will have steeper slopes
and thus, a higher probability of sliding. Each
avalanche changes the spatial pattern of slopes and
thereby affects the size of subsequent avalanches,
which in turn determine the structure of the pile yet
again. It is this pattern of long range correlations
among avalanches that is key to understanding SOC.

What constraints then act on the structure and
dynamics of an ecological assemblage? In the case of
the introduced Hawaiian avifauna, the community
structure is the result of introductions that increase
the number of species and extinctions which lower the
number of species, resulting in a dynamic balance as
in the sand pile. The mechanism behind introductions
is obvious, but the cause of the extinctions is less
clear. A candidate mechanism for extinction is
competition among species. If competition is a driving
force in structuring the community, then the
important dynamics would be observed in the niche
space occupied by different species. Competitive
pressure would be expected to be high in regions of
niche space where species were densely packed, as
would happen, for example, when a number of bird
species shared the same food resource or nesting
requirements. It is possible that, like steep regions of
the sand pile, species occupying dense regions of niche
space are subject to higher extinction probabilities.
The loss of species would change the distribution of
species in niche space and, in turn, change the
probabilities of future extinctions, much like the
dynamics of the sand pile model.

Mechanisms other than competition could also
cause extinction. One possibility is human alteration
of habitat. Human intervention seems unlikely as a
cause of the extinctions because the amount of
disturbed habitat into which the birds were intro-
duced has increased during the past century (Moulton
& Pimm, 1983). Changes in climate may have also
caused extinctions in the Hawaiian Islands. For
example, periodic droughts leading to reduced insect
populations and fruiting failure could have caused
extinctions via starvation, particularly in small bird
populations. Typhoons or other severe weather events
may also have caused extinctions by direct mortality
or habitat destruction. Human activity and climatic
factors are both external causes of extinction, i.e.,
they do not depend on the dynamics of species
assemblage. If Hawaiian bird extinctions were caused

with other species, then we would expect a rapid,
exponential decay in the distribution of persistence
times. This is not the case. Instead, the power-law
distribution of waiting times suggests a system which
is ‘‘episodic at all scales’’. This is in fact central to the
notion of criticality. Critical systems are defined by
self-similar or ‘‘fractal’’ dynamics such that any small
portion of the system, when viewed at a fine scale,
exhibits the same statistical distributions observed for
the whole system at a larger scale. Thus, the critical
distributions we have described for the introduced
Hawaiian birds is consistent with the global scale
intermittency described by Raup (1982).

Discussion

Although self-organized criticality describes a
particular statistical distribution of events (i.e.,
extinctions, avalanches, earthquakes), it does not
dictate a particular mechanism leading to extinctions.
We cannot statistically test hypotheses regarding the
cause of the Hawaii extinctions with the current data;
however, we can outline some possible scenarios.

The increase in extinction rate above a critical
number observed in Fig. 1 suggests that the
development of the species assemblage is structured
by conflicting constraints. In the case of the sandpile
model, the constraints are gravity which acts to lower
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solely by external influences, then no appeal to
self-organization is necessary.

The presence of external driving forces does not
rule out SOC, but raises an important point if SOC
is to be applied to many different systems and levels
of organization. Self-organized criticality has been
posited as governing the dynamics of all ‘‘dissipative
systems’’ [i.e., systems through which energy flows;
Bak et al. (1988), Nicolis & Prigogine (1989)]. If true,
this would imply a situation in which essentially any
system chosen for study would itself be embedded in
a larger critical system. For example, the intensity of
ENSO (El Niño/Southern Oscillation) events, in
which prevailing ocean currents change direction
altering weather patterns throughout the Pacific
Basin, appear to follow a critical scaling law (B.
Milne, personal communication). The ENSO events
could precipitate extinctions in the areas affected
(including the Hawaiian Islands). However, the
presence of external fluctuations does not rule out
SOC as an explanation for the patterns of extinctions
observed: a critical system can itself be embedded in
a large critical system. The dynamics of hierarchically
coupled critical systems remains an open area of
research for those developing a theory of self-organiz-
ing systems and has implications for the development
of hierarchy theory in ecology (Allen & Starr, 1982).

A possible mechanism internal to the system and
involving species interactions, but not competition or
trophic relations, is disease. Disease and pest
outbreaks exhibit intermittent bursts of activity (e.g.,
Ludwig et al., 1978) although these patterns may not
be explicitly linked to SOC. Avian malaria affects
many bird communities throughout the world and is
likely to be found in Hawaiian birds (May, 1995).
Periodic, disease-induced mortality may have reduced
some bird populations to the point of extinction. In
this case, critical dynamics could emerge from the
spreading of the disease and inhibitory feedbacks
from either mortality or, if an individual survives,
post-infection immunity. While SOC has not been
applied to epidemiological models, structurally
similar models of forest fires exhibit SOC (Chen et al.,
1990; Loreto et al., 1995).

Loss of stability due to trophic and other
interactions is another possible mechanism for
extinction. Numerous studies of species interaction
webs have shown that as more species are introduced
to a community the assemblage becomes harder to
invade (Post & Pimm, 1983; Drake, 1988, 1991;
Pimm, 1991) and less stable (Gardner & Ashby, 1970;
May, 1973; Pimm, 1982; Cohen & Newman, 1988;
Hastings 1988). Cohen et al. (1990) have identified
classes of Lotka–Volterra food web models which do

not become unstable as the number of species
increases. However, their results apply only in the
limit of an infinite number of species and do not
explicitly include resource or space limitations.
Simulation results that explicitly incorporate space
and spatial limitations support the assertion that
communities become unstable as species are added
and that instability can lead to extinction cascades (T.
Keitt, in preparation). It is possible that SOC arises
in ecological communities through a process of
assembly in which the ecosystem accumulates species
until reaching the frontier of stability and then
fluctuating around that boundary.

Conclusion

Our analyses of the introduced Hawaiian avifauna
suggest that ecological communities assemble to a
critical dynamical regime characterized by power-law
distributions of extinction events and species persist-
ence times. Critical dynamics have important
implications for how we view ecosystems. Tradition-
ally, extinction has been thought to be the result of
individual species traits, more-or-less deterministic
species interactions, or large-scale disturbance.
Instead, SOC suggests a dynamical view of extinction
where even small perturbations can precipitate
extinction cascades. Extinction events may represent
fluctuations in a non-equilibrium dynamical system
and have little to do with the traits of individual
species. Species in complex communities may in fact
be analogous to grains in a sandpile. The fate of a
particular grain depends little on its particular shape,
but is critically influenced by the overall structure of
the pile. Similarly, persistence of species in an
assemblage may be largely determined by the ‘‘ghost
of fluctuations past’’ which structure the community.
We hope that this work will stimulate thinking about
complex ecological dynamics and macro-scale expla-
nations for the patterns we observe in ecological
systems.

The seeds of this paper originated in an ongoing
discussion about complexity and self-organization with B.
Milne, A. Johnson, and J. Brown. We thank D. Mehlman,
B. Enquist, G. Stevens and S. Forrest for reviewing a draft
of this manuscript.
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